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B Abstract

Constant elasticity of substitution (CES) demand for monopolistically competitive firm-varieties is a standard tool for
models in international trade and macroeconomics. Inter-variety substitution in this model follows a simple share
proportionality rule. In contrast, the standard toolkit in industrial organization (I0) estimates a demand system in
which cross-elasticities depend on similarity in observable attributes. The gain in realism from the 10 approach comes
at the expense of requiring richer data and greater computational challenges. This paper uses the dataset of Berry
et al. 1995, who established the modern |0 method, to simulate counterfactual trade policy experiments. We use the
CES model as an approximation of the more complex underlying demand system and market structure. Although
the CES model omits key elements of the data generating process, the errors are offsetting, leading to reasonably
accurate counterfactual predictions. For aggregate outcomes, it turns out that incorporating non-unitary pass-through
matters more than fixing over-simplified substitution patterns. We do so by extending the commonly used methods of
Exact Hat Algebra and tariff elasticity estimation to take into account oligopoly.
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1. Introduction

Tariffs, never completely absent, rose to the foreground of US economic policy
again in 2018. The US imposed safequard tariffs on washing machines and solar
panels, followed by national security tariffs on steel and aluminum. The US pres-
ident threatened Canada, Mexico, and Germany with national security tariffs on
imported autos. Intensified tariff use led to renewed efforts by economists to quan-
tify the impact of trade policies. The 2018 tariffs also reinforce the point that most
trade policy is imposed at the industry level. This creates a dilemma for researchers.
Trade economists have developed a toolkit for tariff counterfactuals that imposes
minimal data and estimation requirements. Industrial organization economists have
an even more established framework for conducting industry-level counterfactuals.
It differs from the approach favored by trade economists in almost every impor-
tant respect, but the most emphasized feature is rich substitution. Berry et al.
(2004) state the main 1O critique that applies to CES as well as other models
of monopolistic competition used in trade: “Models without individual differences
in preferences for characteristics generate demand substitution patterns that are
known to be a priori unreasonable (depending only on market shares and not on
the characteristics of the vehicles).”

The 10 structure promises greater realism at the cost of more onerous data and
estimation requirements. What can be said, systematically, about the suitability
of the trade approach when the data are generated by the assumptions of the 10
approach? This paper starts with the premise that 1O economists have correctly

1This research has received funding from the European Research Council (ERC) under the Grant
Agreement No. 313522. We thank participants to the SMU-NUS-Paris Joint Trade Workshop
(Merlion 2018 Workshop). Very helpful comments were received during seminar presentations at
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Oslo, Mannheim University, ULB, SED. The authors are particularly grateful to Scott Orr for his
detailed reading and advice.
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specified the data generating process (DGP). That DGP presents several distinct
challenges for the simpler representation of CES-monopolistic competition offered
by trade economists. After analyzing those problems, we investigate whether the
CES method can be viewed as an acceptable approximation. To do so, we use both
the data and the parameter estimates from the seminal paper in the literature,
Berry et al. (1995). Then we impose 10% tariffs on foreign varieties and solve
the model to obtain the new equilibrium. We then use the method of Exact Hat
Algebra—relying solely on initial market shares and on an estimate of the elasticity
of substitution—to obtain a CES prediction of ex post equilibrium market shares.

In this first simulation, the CES prediction is astonishingly accurate, undershooting
the target by only one quarter of a percentage point (8.00 vs 7.73). To understand
this remarkable success, we proceed to a second set of simulations. Those are
intended to investigate each of the methodological differences (errors) between
the CES approximation and the BLP DGP. Trade economists typically estimate the
CES as a constant price elasticity when BLP features own price elasticities that vary
across firms. Within the single-market setup of the original data, we cannot easily
estimate the CES parameter. A first change is therefore to augment the original
model to consider multiple markets, each imposing import tariffs. Once we base
the CES prediction on an estimated parameter rather than calibration, the central
case performs a little less well but alternative settings are more robust. Another
unsatisfying element of the first simulations is that the issue functional form of
demand (logit vs CES) obscures the role of consumer heterogeneity in preferences
over attributes. To remedy this, we include in our second set of simulations a
mixed CES version of the original BLP data generating process. This DGP nests
CES as a polar case so it clarifies the role of random coefficients as opposed to the
functional form of demand.?

The main takeaway is that rich substitution is not nearly as pivotal in determining
the performance of the CES approximation as is the amount of pass-through from
tariffs into prices. When CES gets pass-through (close to) right, it tends to hit
the aggregate target accurately. But there is no guarantee, nor any universal fixes,

°Mixed CES versions of random coefficient modeling have been recently used by Bjérnerstedt and

Verboven (2016), Adao et al. (2017), Redding and Weinstein (2019), and Piveteau and Smagghue
(2021). Several well-known models can be thought of as special cases of mixed CES. As the
variance across households of price elasticity and preference for characteristics goes to zero, mixed
CES can reach three different limiting cases. First, with many single-variety firms it becomes the
Dixit-Stiglitz model which we have also referred to as CES-MC. Second, with a small number of
single-variety firms, the limiting case is a version of Atkeson and Burstein (2008) with the upper
level CES set to one. Finally with several large multiproduct firms, MCES converges on models
used by Hottman et al. (2016) and Bernard et al. (2018).



CEPII Working Paper Poor Substitutes? Counterfactual methods in 1O and Trade compared

when the approximation does not match pass-through patterns in the data. A
related conclusion of those “dissection” simulations is that the CES success at ap-
proximating BLP in aggregate outcomes turns out to be a case of offsetting errors:
assuming CES monopolistic competition, rather than logit oligopoly, overestimates
the pass-through of tariffs into consumer prices. However, random coefficients
on prices generates a selection effect that pushes in the opposite direction: As
established in Nakamura and Zerom (2010), heterogeneous price sensitivity raises
pass-through. In our context, when tariffs rise, the households who keep buying
foreign varieties are the ones with low price responsiveness. This lowers the demand
elasticity and increases the pass-through elasticity.

The large literature employing the Berry et al. (1995) framework motivates the use
of the random coefficients demand by critiquing systems that fail to incorporate
rich substitution. In prominent surveys carried out a decade apart, the authors
point to the same crucial flaw:

“[W]hile the [CES] functional form is convenient, it imposes a very strong
restriction on the demand system. The simplicity of the model and its analytic
tractability make it a popular choice in theory and it is also heavily used in
trade and in macro, but it is not appropriate to explain micro data and is
essentially never used in empirical 10.” Nevo (2011), italics added

“[O]ne can go too far in the pursuit of parsimony. Some of the simplest
demand specifications (e.g. the CES, multinomial logit, multinomial probit)
Impose strong a priori restrictions on demand elasticities—and therefore on
markups, pass-through and other key quantities of interest—that are at odds
with common sense and standard economic models.” Berry and Haile (2021)

Emphasis on the need to incorporate rich substitution, combined with multi-product
oligopoly is particularly strong in the literature devoted to the car industry, an em-
blematic case studied from the beginning of the demand-centered |O literature
(Berry et al. (1995, 1999), Goldberg (1995), Verboven (1996), Goldberg and Ver-
boven (2001), Petrin (2002), Train and Winston (2007), Reynaert and Verboven
(2014), and Cosar et al. (2018) for instance). Because of our use of the BLP
structure, data, and parameters, we speak to this literature “on its playground,”
assessing when and why the approximation fails to predict aggregate outcomes.
Using the same data and parameters as Berry et al. (1995, 1999) addresses the
potential concern that an ad hoc DGP might not exhibit sufficiently rich substitu-
tion patterns or strong enough market power.

Notwithstanding the valid critiques made by 1O economists, CES-MC has ad-
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vantages that may not have been fully recognized. In addition to the tractabil-
ity/parsimony point conceded in the quotes above, CES allows for Exact Hat Al-
gebra, a method that allows the researcher to do without detailed lists of product
attributes and price data. It also does not require the inference of marginal costs
from first order conditions. Relatedly, the |O literature has acknowledged that
the random-coefficients models present serious challenges in computation (Knittel
and Metaxoglou, 2014), identification (Gandhi and Houde, 2016), sensitivity to
the choice of instruments (Reynaert and Verboven, 2014), data requirements, and
transparency of estimation. Conlon and Gortmaker (2020) present a very complete
coverage of the various practical challenges in BLP estimation, with different fixes
to the original framework that have been proposed by the |O literature. SalaniA®©
and Wolak (2019) also note the estimation challenges of the BLP-based frame-
work and propose an alternative estimation strategy, consisting in an approximation
where consumer's tastes dispersion parameters can be estimated in a simple 2SLS
procedure. Their Monte Carlo simulations show that their approximation result can
be used to at least give very close starting values to a more elaborate but more
challenging estimation technique. Our paper is also centered around Monte Carlo
simulations, but we sidestep entirely the estimation of issues related to the BLP
model. Instead, our Monte Carlos assess the ability of the CES approximation to
predict aggregate outcomes of BLP-generated data.

Our paper proceeds as follows. We first describe the BLP data and model struc-
ture in section 2. We then explain our two extensions to the Exact Hat Algebra
method in section 3. After analyzing the three main causes of concern for the CES
approximation in section 4, we assess in section 5 the relative importance of these
Issues using simulations that treat them one at a time.

2. The BLP data generating process

Berry et al. (1995, 1999) describe the data generating process (DGP) in detail,
but here we review the key equations and provide the necessary details on how we
implement it in our simulations, together with some key statistics of the original
data set used in both articles.

The key components of the BLP DGP are heterogeneous consumer choice proba-
bilities and multi-product firms. The demand side consists of a large number, N,
of households, with each h having its own indirect utility u,,, for variety m. The
preferences of the households are unobserved in BLP but we have data on the
fraction, s,,, of the N consumers that select each model m within the set of new
cars available for purchase, along with the fraction who purchase the outside good
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so (no purchase, second-hand car, etc.). With unit demand, the market share of
variety m is®

_ Zh th
N
Assuming Gumbel-distributed additive shocks in u,,,, the choice probabilities are

o eXp(Zf:O B;;Xr/;/ — OpPm + Em) (2)

14+ 32 exp(Xi_o BExE — anp; + &)
We will refer to B heterogeneity as the feature of the model that households value
the physical characteristics (other than price) differently. There are K = 4 charac-
teristics plus a constant (x? = 1). Since the indirect utility of the outside good is
normalized to one, the coefficient B? tells how much the household prefers a new
car relative to the outside good. The mean of these coefficients, 3° determines the
share of the outside good. Reflecting the fact that only 9% of households buy new
cars, Berry et al. (1995) estimate 3° to be —7.1. The standard deviation of 39 is
3.6, suggesting considerable dispersion in appeal of new cars. The four other xX
are (1) acceleration(horsepower/weight), (2) fuel economy (miles per dollar), (3)
space (width x length), and (4) air conditioning (as a standard feature). When
we speak of B heterogeneity, we refer to the variance in the 8. The means and
standard deviations for each of these Bf are all obtained from Berry et al. (1995)
and reported in the first column of Table 1.

Sm where P, = Prob(ump > Upwp, V') (1)

mh

Variance in the price responsiveness parameter o, will be referred to as a hetero-
geneity. There are two important points. First, a heterogeneity is large because
we follow Berry et al. (1999) in setting ap = a/y;, where Iny, ~ N (2.21,1.72) in
1990.# While this specification imposes a negative relationship between income and
price sensitivity (ap), subsequent papers, such as Nevo (2001) and Nakamura and
Zerom (2010), estimate the relationship using more flexible specifications. Second,
as our simulations will illustrate, o heterogeneity changes the curvature of demand,
leading to market outcomes that are qualitatively different from those generated
by B heterogeneity.

3Here we deviate slightly from the convention of expressing market shares as integrals over a
continuum of consumers. Our summations over a finite number of consumers lead naturally to
expressions of demand elasticities in terms of variances and covariances of household probabilities.
The averages in equation (1) can also be thought of as a Monte Carlo integration, the method
used in our simulations.

“We follow the recent literature that replicates the original BLP results by using the Berry et al.
(1995) data and parameter values, combined with the Berry et al. (1999) approach to consumer-
level heterogeneity in price sensitivity (cp). Our approach follows Andrews et al. (2017) (with
details contained in their replication package) and Conlon and Gortmaker (2020) (with code tutorial
accessible at https://pyblp.readthedocs.io/en/stable/_notebooks/tutorial/blp.html).
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Table 1 — BLP data: estimated parameters and key statistics

Estimated parameters Auto industry statistics in 1990
Variable Mean Std. dev. Statistic Value
Constant -7.061 3.612 Outside good share (%) 91
HP/WT 2.883 4.628 Domestic share 68
Air con. 1.521 1.818 Concentration (CR5) firms 86
Miles/USD  -0.122 1.050 Concentration (CR5) models 18
Size 3.460 2.056 Number of firms 20
Price 43.501 91.906 Number of models 131

Note: Estimated parameters obtained from Table IV of Berry et al. (1995), with
the exception of the standard deviation of the price parameter, calculated as
ay/(exp(02) — 1) exp(—2u + 02) with 4 = 2.18 and ¢ = 1.72, being the mean and
standard deviation of log incomes in the United States in 1990 used by BLP. The
Andrews et al. (2017) replication package provides these parameters as well as the
data for our calculated statistics in the second column.

In contrast to the monopolistic competition assumption of one variety per firm,
multi-variety firms were important in the US car industry in 1990. The Big 3 firms
made half the 131 varieties sold in 1990. The five largest firms accounted for 86%
of new car sales. While in principle the BLP framework takes into account the
importance of large firms in many industries, the 91% share for the outside good
means that actual market shares for new car models are very small. Including the
outside good, the mean s,, in 1990 are 0.07% and the maximum is 0.44%. Ta-
ble 1 summarizes some important industry statistics that guide our counterfactual
experiments of sections 4.5 and 5.

Let each firm f own a set of varieties denoted Jr. The union of these sets is J
which we also partition into sets of domestic, Jy and foreign Jg varieties.®> The
total number of varieties, | 7|, is taken as fixed. The firm's profit maximization
problem chooses prices for each model accounting for the impact a rise in m’s price
would have on the profits earned for the other models (j # m) € Jr. The first
order condition is

P = Coy — Sm T Z(J?'fm)ggnf(pj — CJ)% (3)

opm

The own- and cross-price derivatives of s, are shown in Appendix A.2. Having data
on {sm, pm, Jr} and having estimates of the mean and standard deviation of {a,

5In the BLP data, domestic models constitute 68% of new car sales.
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B}, we can infer £, (via the contraction mapping). Then ¢, can be obtained by
moving ¢, to the left hand side of equation (3). On the right hand side, s, is known,
0Sm/0pm is implied by the parameters and price data, leaving only the summation
term as a function of the unknown c,. Starting with ¢,, = p.,, we iterate until
reaching a stable vector of marginal costs. At this stage, we have knowledge on
all relevant characteristics of each car model m, and can use those combined with
the parameters of consumer preferences to run counterfactual experiments.

3. Counterfactual calculations: true BLP vs CES hat algebra

The counterfactual policy we use to motivate this paper are new tariffs of 10%
on imported varieties. Berry et al. (1999) consider quantitative restrictions on
imports, but tariffs are much easier to model and recent experience demonstrates
that tariffs remain relevant. Because the tariff imposed on model m depends on the
model's origin country, /(m), and the market n where it is sold, we now move to a
multi-market setup. Following convention, we model tariffs as shocks to delivered
marginal costs of model m to market n. In the counterfactuals, marginal costs
rise from ¢y, = CpyTmn tO CmT,’(m)n = CmnTi(myn, Where iy, = 1.1 for all foreign
models (/(m) # n) and 7i(m), = 1 for domestic models (i(m) = n). The true new
equilibrium is obtained by iterating equation (3) until a fixed point in new prices,
pi is reached.® Then we substitute the prices into demand to obtain the new
market shares, denoted s' . which we aggregate to obtain the true change in the
domestic share of new car production.

T
BLP _ Smn___ Smn
ASPF = <1 : 1_50n). (4)

meJy ~ S0n

In contrast to the true BLP market shares, the CES predictions are not obtained
by solving the model in terms of its structural parameters. Rather, hat algebra
methods predict new market shares using only the initial market shares s,,, and the
single CES demand parameter, denoted 7.

The CES market share for model m is given by’

-n
pmn - -
S = (AmnPn) , where P, = (1 + %- (Pjn/Ajn) ™),

5The fixed point iteration usually requires “dampening” to converge. Thus if the new price implied
by kth iteration of the first order condition is pfr’fn) we instead use l/pfnkr); +(1- //)p%‘n_l), with v < 1.
"As BLP work with quantity shares, we use the modification of the CES employed by Head and

Mayer (2019), where 7 is the own-price elasticity holding constant the price index, P,.
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and where A, is the demand shifter. Prices are given by pmn = UmnCmTi(m)n,
where i, is the markup (defined here as price divided by marginal costs). Defining
Omn = Amn/Cm, We can re-express equilibrium market shares as

—1/n

1+ Z(Mjnﬂ(j)n/%n)_n : (5)

-n

T.

Smn = <—an '(m)n> , Where P, =
(pmnPn

The standard approach to Exact Hat Algebra since Dekle et al. (2007) imposes
constant markups, and calculates counterfactual market shares as

/ 1]
<~ Smn _ Titmn 6
Sy = 271 — — (6)
Smn SOn + ZJ s-/nTI(J)H

where 7 is an estimate of n. We will consider two potential sources of 7. The first
Is the average own price elasticity implied by BLP data and estimated parameters
(4.05).%8 The second estimate comes directly from a regression of log market shares
on an ad valorem cost shifter such as the log of one plus the tariff rate.

We derive an equation for estimating n by first noting that @, is constant in CES
under monopolistic competition and hence cancels from equation (5). Taking logs
of this equation yields a firm-level version of the gravity equation:

INSpn = =M InTigmyn + FEm + FE, + Upp. (7)

Here we have modeled miIn¢,,, as the sum of a model-specific fixed effect—
capturing production cost (c,) and the way the average consumer values the at-
tributes of the car—and an idiosyncratic term, v,,,. The latter is modeled as if
it were a well-behaved error term capturing variation in A, across markets. In
practice, it also contains the specification error from assuming CES when the un-
derlying data comes from a BLP process. The last element of the specification is
a market specific fixed effect capturing —nlIn P,.

The estimation of (7) provides 7, which is the only parameter needed (besides
observed market shares and changes in trade costs) to compute the counterfactual
outcome in (6). Because of mis-specification, 7j does not estimate the underlying
price elasticity of demand as it would have if the data were really generated by a
CES-MC process. Instead 1) recovers a rough estimate of the average elasticity of
market shares with respect to cost shocks, building in non-unitary pass-through.

8This estimate, obtained from the 1990 data, hardly differs from the 3.928 pooled 19711990
estimate reported in the Conlon and Gortmaker (2020, Table 8) replication.

10



CEPII Working Paper Poor Substitutes? Counterfactual methods in 1O and Trade compared

Thus if the underlying pass-through is less than one, % will be smaller than the price
elasticity, which can compensate in part for the mis-specified functional form.

The major defect of EHA at this stage is its reliance on constant markups and
the associated assumption of unitary pass-through. Within the homogeneous logit
model, pass-through elasticities are much lower than one, even under monopolistic
competition. In appendix A.4 we show how to conduct Exact Hat Algebra in a
logit model with non-negligible market shares. Here we maintain CES demand but
show two ways that CES counterfactuals can be adjusted to allow for non-unitary
pass-through.

We first generalize EHA to allow for markups determined inside a CES multi-
product oligopoly such as that studied in Hottman et al. (2016) and Nocke and
Schutz (2018). The optimal markup in this CES-OLY approximation varies over
both models and markets. Assuming, as in BLP, that firms compete in prices
(Bertrand), the markup equation at the model level depends on market shares at
the firm level:

n(1—sr) +1
77(]- - an)

. VmeEJr, with sp= > su (8)

meJs,

Umn = Hfn =

The markup converges to (n+1)/7 as firm-level market shares go to zero. Except
in that limit case, there is no closed-form solution to the market share equation
and estimation requires an iterative procedure to estimate n. Start with a guess
of n°. Since we observe firm market share s¢,, we can compute the equilibrium
markup u?n using equation (8). This markup is passed to the left-hand-side, and
combined with the log of market shares to yield the following regression for the kth
Iteration

In Spn + NNk, = =0T InTi(myn + FEm + FE, + Umn, 9)

The coefficient on trade costs provides a new estimate n ™!, with which we can

recalculate markups. The process iterates from k = 0 until n**1 = n¥ (within
tolerance) at which point we have an estimate 7, consistent with Bertrand oligopoly
pricing.

Once the estimate 77 is obtained, one can also work with Exact Hat Algebra to
compute counterfactual market shares that account for changes in markups. The
changes in market shares for the inside goods (m > 1) are

- (.[j'mn/’\-/(m)n)_?7
™ son + Zj Sin(fjnTiyn) ™M

(10)

11
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The change in markup Is computed as

O B /1 o

> SmnS
) A €Jr, >mnomn
Mmn = Kfn . VYme Jr, with &, = ek

B pen M1 — S¢nSen] Sfn ’
(11)

We have all the elements to iterate over the EHA predictions. Start with §,,, = 1,
aggregate to obtain the firm-level market shares &¢,. Using initial markup (8), one
can retrieve its change from (11). The new vector of market share changes is finally
obtained with (10). The process stops when the vector of §,,, stops changing.

The CES-OLY approach just described computes pass-through of cost changes
into prices based on strong assumptions about conduct. We also consider a
third approach to counterfactuals in CES that is agnostic on market structure
and instead relies on empirical estimates of the pass-through elasticity. Let p =
| Tt ZmEJF OIn pmn/01In cmn, be an estimate of the average rate at which for-
eign varieties pass through increases in their marginal costs. What we refer to as
“approximate” hat algebra (AHA) computes the counterfactual as

[ S;nn _ [1 + (%i(m)n _A 1)ﬁ]77’ . (12)

Smn Son + Zj Sjn[l + (Ti(j)n - 1))0]_77

This is not exact since almost any model of imperfect pass-through will have dif-
ferential pass-through across models and markets, rather than the scalar p used
here.

Regardless of whether we use the MC, OLY, or AHA methods, the CES counter-
factuals aggregate the new market shares obtained from hat algebra, s/, = S,,5mn,
to obtain the change in the domestic share of the new car market:

CES __ sr/nn _ Smn
a5 = Y ([T ), (13)

Son

where s5, =1—-3 /5.

In the next section we analyze three features of an equilibrium in the BLP model that
the CES counterfactuals cannot match. Before continuing, we should acknowledge
that Exact Hat Algebra’s parsimony in terms of data requirements may come at a
cost. Dingel and Tintelnot (2021) note that the method is equivalent to calibrating
|7 | unobserved parameters (here @,,,) based on | 7| market shares. When those
market shares are based on small numbers of choosers (N in the model), granularity
can lead to an overfitting problem. In the context of large consumer goods markets,
like the US new car market, we do not see this as a major concern, given that
millions of American households buy new cars each year.

12
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4. Implications of the BLP data generating process

What behavioral predictions of the DGP used by Berry et al. (1995) present dif-
ficulties for the CES model? We have identified three main concerns. The first,
rich substitution, is well known but we offer a new way of quantifying its impor-
tance in the data. The second, local monopoly, is probably familiar as well but
we have a new analytic result and quantification. We believe the third result—on
pass-through—has not received the attention it deserves, especially as we find it
is the best indicator of when the CES approximation may be expected to miss the
mark widely.

4.1. Rich substitution

Implication 1. Positive covariance in household choice probabilities raises cross-
price demand elasticities.

With heterogeneous a and 3, the cross-price elasticity of demand is®

oP;
OIS 2hopy P _ [ 2n@hPmnPin] P (14)
olnpn, N s N S

Similarity in the attributes of models m and j will make IP,,, and IP;, covary positively,
a feature that cannot be captured if all consumers value attributes identically. This
implication of BLP arises from both o and (3 heterogeneity but as it does not
require the former, it is easier to explain by focusing on B heterogeneity alone.
Removing income variation by setting y, = 1, the price coefficient is o and the
factor in brackets is linear in the covariance of h probabilities, yielding a cross-price
elasticity of

pret _ 0lns

_ O‘fm 3 FinPmn _ oo o (14 cov(Pjn, Prn)
S h

I 0N P |, —a N 5jSm
Dividing eﬁ:et by eJ'.O,ﬁit = asS,pm, the cross-price elasticity with homogeneous con-

sumers, the ratio of cross-price elasticities is

Bhet

€ cov(Pip, Py
Jlogit -1 M (15)

The cross-price elasticity of BLP (with only 8 heterogeneity) therefore depends
on whether probabilities of buying varieties m and j covary positively or negatively

9Computation details to be found in Appendix A.2.

13
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across consumers. Two products with similar characteristics have similar attrac-
tiveness for each of the consumers, leading to positive covariance and therefore
higher cross-price elasticity than under homogeneous logit.

What about the comparison with the CES cross elasticity that operates in the
CES counterfactuals? Since the cross-price elasticity under CES is 7ns,,, the B
heterogeneity vs CES cross elasticity ratio is given by

Bhet
€; a cov(P;,, P
Ejm sjsm

When quantifying the above expression, we run into the problem that the parame-
ters a and 1 come from two different models. We resolve this by calibrating them
both to match the average own-price elasticity implied by the BLP parameter esti-
mates, that is €-F = 4.05. Inverting the formula for the homogeneous logit own

logit

price elasticity (€99 = ap,(1—s,)), we isolate a = . Our calibration sets
P

both €°9 and m equal to €'F, implying that the ratio #bm equals (17—15,,7) With
the very small s,, associated with a 91% outside good share, the average value
of ap,/m is close to one. As a consequence, the B heterogeneity cross elasticity
compared with both types of homogeneous tastes assumptions has the same sign
and is roughly proportional to the covariance of probabilities. A further implica-
tion of the calibration equating average own price elasticities is that the average
of the ratio of cross-price elasticities in the two homogeneous consumer models,

logit / _CES :
€m /€m. will also be close to one.

4.2. Local monopoly

The first implication relates to cross-price elasticities, and how models with ho-
mogeneous consumers will fail to account for the fact that the response in the
demand for “proximate” varieties will be stronger for a given variety's increase in
price. Introducing consumer heterogeneity in their preference for characteristics
however presents a further challenge: it also changes the own price elasticity for
each model m.

Implication 2. Variance in household probabilities lowers own-price elasticities.

Heterogeneity in the coefficient on product attributes and prices leads to consumers
differing in their probabilities of choosing a model. The divergence in probabilities
in turn gives rise to more local monopoly than in simple logit (or CES). Own-price
elasticities in mixed logit are

OInsm _ pm y YononPmn(l —Pmp)

olnpm  Sm N

(17)

14



CEPII Working Paper Poor Substitutes? Counterfactual methods in 1O and Trade compared

Again this implication of the BLP DGP is a consequence of both dimensions of
consumers’ heterogeneity, but exposition is simpler when restricting to the 3 het-
erogeneity case. Setting o, = o, we obtain

— —apy (1~ ZalEon)

Sm

olnsy,
olnppm,

Let Vi = >, (Pon — Sm)? /N = >, (Pmn)? /N — s2, be the variance, for a given m of
the household choice probabilities (V;,, = 0 if B, = ). Now the own price elasticity
simplifies to
Olns,
olnpm,

= —apm(l —5Sm—Vin/Sm).

ap=a

This result is not specific to logit and the equation above holds for mixed CES as
well (with the V;, redefined as the income-share weighted variance of Pp,p,).

Dividing by —ap,,(1 — s,,), the homogeneous counterpart of own price elasticity,
the shrinkage of the own price elasticity due to B heterogeneity is given by
E?nhet Vm

—=1-— <1 18
El,%glt Sm(l _Sm) - ( )

with €PMt and €!°9t being defined as —dIn's,,/dIn p,,, under B heterogeneity and
logit cases respectively.

4.3. Non-unitary pass-through

The last, and quantitatively most important, implication relates to pass-through of
cost changes into prices. Indeed, even assuming that the researcher can overcome
Implication 2 and estimate the correct own price elasticity, the final effect on sales
also depends on how the policy experiment translates into prices. Trade economists
mainly work with functional forms that guarantee a unitary pass-through of costs
into delivered prices, and therefore do away with this issue. However, if the DGP
Is mixed logit, true pass-through deviates from this simple case.

Implication 3. Logit demand without random coefficients has pass-through elastic-
ity strictly less than one but random coefficients on prices can raise the pass-through
elasticity over one. CES with monopolistic competition constrains the pass-through
elasticity to be one.

With multi-product firms, the calculation for the pass-through elasticity (PTE) is
too messy to be informative. Fortunately, in the single-product firms case, there is
a very compact result, similar to one shown by Bulow and Pfleiderer (1983), that
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provides intuition on how demand curvature matters. Let € and £ be the own price
elasticity (€, = —Insy/0Inpy, > 0) and super-elasticity (E,, = 0In€n/0Inpp).
Then the PTE is given by

Olnpy, €En— 1

dlnc, €n—1+E, (19)

Since €,, > 0 pass-through elasticities exceed one if and only if E,, < 0. Ho-
mogeneous logit has E,, = 1+ apmSm = 1 — €mSn/(1 — s,) > 0 and hence
dInpm/0Incy, < 1. As the s, become small (for example when the outside good
has a high share), E,, — 1 and PTE — (€, — 1)/(€») < 1 that is the inverse of
the markup formula. On the other hand in CES monopolistic competition £, = 0,
so the PTE is one.

In mixed logit, the super-elasticity is given by

Y on O Pmp(1 = Prp) (1 — 2Ppyy)
Eh C\’-h]P)mh(l - ]P)mh)
which is ambiguous in sign. With levels of a-heterogeneity across households im-

plied by BLP estimates, we will see that the super-elasticity is negative and pass-
through elasticities are greater than one (in the single product case).

Em:1+€m_pm

(20)

4.4. Three implications illustrated

Figure 1 and Table 2 illustrate the quantitative relevance of the three implications
in the context of the data set and parameter estimates of Berry et al. (1995,
1999). The figure and table contents are generated from one run of the BLP Data
Generating Process drawing 100,000 consumers and using the parameters and data
for 1990 described in Table 1.

Panels (a) and (b) of figure 1 display the rich substitution patterns involved in
Implication 1. Equation (14) shows that the cross-price elasticity, ;'n”:;, is pro-
portional to price m, and inversely proportional to market share s;. We remove
those effects by first computing the cross elasticities using the original data and
estimated parameters and then regressing the log cross elasticity on fixed effects
to capture the j and m terms. The residual from this regression is graphed against
the dissimilarity in the characteristics vector, measured with the Mahalanobis dis-
tance in terms of the four x* characteristics and price. As with the log cross-price
elasticity, we purge the Mahalanobis distances of m and j effects by taking residuals
from a fixed effects regression. The scatter plot reveals a striking fit: the within

R2is 77%.
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Figure 1 — Cross and own price elasticities in BLP data
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Table 2 reports the coefficients of this regression in the third column, each of
the rows corresponding to different degrees of consumer heterogeneity. With all
sources of heterogeneity active, the coefficient is —0.98, while the relationship
between cross elasticities and the distance in varieties’ characteristics less steep at
—0.53, but with an even larger fit at 90%. Since homogeneous logit predicts a zero
slope and therefore a zero R?, we see this regression as a useful way to quantify
the amount of rich substitution conditional on a set of attributes and parameter
estimates.

Depending on the sign of the covariance between household choice probabilities,
equation (16) shows that the 3 heterogeneity cross-price elasticity can be higher
or lower than the CES corresponding elasticity. Figure 1(b) illustrates the cross-
elasticity comparison using the full BLP model including o heterogeneity. The
intuition from equation (16) carries through, with BLP elasticities distributed on
both sides of the 45-degree line representing equality with the CES approximation.
An example of model pairs with an order of magnitude higher cross-elasticity than
the CES is the Geo Metro and the Ford Escort. In the reverse direction, an increase
in the price of the Yugo GV Plus has a tiny fraction of the cross elasticity with the
Mercedes 560 under BLP as it does in CES (though both elasticities are very small
due to the small share of the Yugo). The fourth column of Table 2 reports average
value of the scaled covariance term <2EinFm) 4 10, with all types of heterogeneity,

SiSm
and 7, when considering physical attributes only. The high scaled covariances imply,

17

price (log scale)
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Table 2 — BLP Data Generating Process: Key moments

Elasticities Rich substitution
cov(Pjp,Pmn) -
€m Em Maha. Sjgm J sm(i/fsm)
Setting Avg. Avg. Coef. Avg. Avg.
BLP 4.05 -0.49 -0.98 10.36 0.017
Logit 405 1.00 0.00 0.00 0.000
B het. 402 1.03 -0.53 7.09 0.010

Note: €., is the (opposite of) the own price elasticity and E,,
is the super-elasticity (the elasticity of €, wrt p,,, with formula
given by 20). Maha. Coef. is the slope in a regression of the log of

—g'{;j’ on Dy, the Mahalanobis distance between characteristics
J

of car models m and j. Logit has a, = a (holding avg own price
elas constant) and 8, = 8.

via (15), that cross elasticities average 8 to 11 times larger with heterogeneous
consumers than for logit.*°

Panel (c) of Figure 1 investigates the quantitative importance of Implications 2
and 3, involving own price elasticities. We start by selecting one car model and
compute how the theoretical price elasticity varies with the price. The car model
chosen (the 1989 Volvo 240) is one that has a benchmark own price elasticity quite
close to the average variety in the original BLP settings (4.05 as stated in the first
column of Table 2). Starting with those settings, we then evaluate the own-price
elasticity (17), varying the price of this car model by a range of from —25% to
+25% of the actual 1990 price. This evaluation involves recomputing household
probabilities to buy each variety and therefore all car models’ market shares. The
result is represented in the figure with the downward-sloping orange line. We see
that the log of own price elasticity falls with the log of price, implying a negative
super-elasticity. More generally than for this precise car model, the second column
of Table 2 shows an average negative super elasticity of —0.49. Equation (19)
tells us that in a single-product world, the E,, < 0 will lead to super-pass-through
(PTE > 1). Our counterfactual results displayed in Table 3 establish that the
single-product prediction holds in the multi-product firm data of BLP (with a PTE
of 1.13), corroborating the concern raised in Implication 3.

The solid blue line in panel (c) illustrates the own-elasticity versus price relation-

10T he same is true when compared to CES: As explained in section 4.1, when parameters a and
7 are calibrated to yield the same average own-price elasticity, the two versions of homogeneous
consumer cross-price elasticities have approximately the same average values.
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ship for the case of simple logit demand, i.e. canceling all sources of consumer
heterogeneity (and adjusting o such that the average own price elasticity is the
same as in the full BLP setup). The slope is positive as predicted by theory (where
En =1+ apmsy) and close to one, the limiting value as market shares go to zero.
The dashed blue line adds B-heterogeneity to consumer behavior, which illustrates
Implication 2: own price elasticities are systematically smaller in that case due to
the local monopoly effect. However, because market shares are so small in the BLP
data (since the outside good share is 91%), the difference is quantitatively negli-
gible.** Table 2 confirms that super-elasticities that are positive and very close to
one are a feature of the logit model, even when allowing for heterogeneous tastes
for attributes other than price.

Lastly, we illustrate the two CES approximations used in the paper. First, the
CES-MC case, with its continuum of negligible firms, gives a constant elasticity (n)
chosen here to be at the average level of the BLP data (4.05). This is represented
in solid red. In dashed red, we account for the fact that, with non-negligibly
sized firms, the CES elasticity is (1 — s,,), i.e. declining with the market share
of model m. With low prices, this share increases and the own price elasticity
falls. This is true in panel (c)'s representation, although the effect is very small
quantitatively, again because of the very small market shares of all varieties in
the data. Even without rich substitution, the positive super-elasticity implies that
logit will have a very different pass-through from CES, a feature which will prove
important in our simulations’ results.

4.5. Benchmark counterfactual, known CES parameter

The first experiment we conduct asks a simple question: Would a CES monopolistic
competition approximation of the US car industry be able to predict the response to
a change in trade policy for data generated by mixed logit multi-product oligopoly?
To pinpoint the role of functional forms, we first sidestep the issue of how to
estimate the CES and simply assume we already know it to be 4.05 (the average own
price elasticity coming from the BLP parameter and data). Keeping all parameters
and data as in the original Berry et al. (1995) study, we then impose a 10% tariff
on the foreign models, solve for the new BLP equilibrium and compare changes in
outcomes to changes predicted by the CES approximation.

The first line of Table 3 implements this counterfactual increase in tariffs imposed
on all foreign cars. The “true” change in the domestic firms' collective share of

1 This generalizes the result of equation (18), where the ratio of 3 heterogeneity over logit own
price elasticities is driven by ﬁ which has an average value of 0.01 (Table 2).
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Table 3 — Counterfactual 10% tariff using the BLP data

Quantity shares Pass-through
Agg. AS rate  elasticity
Setting True EHA AHA Avg. Avg. #1

BLP 8.00 7.r3 857 157 1.13 1.12
Logit 385 7.73 539 1.00 0.67 0.62
B het. 333 7.73 527 098 0.65 0.57

Note: CES EHA uses n = 4.05. AHA (approximate hat al-
gebra) uses 1 = 4.05 and the average pass-through elasticity
as in equation (12). AS is the change in aggregate share of
domestic models in new car market. PT rate = 8p,,,/9¢Cp.
Logit has ap = a (holding avg own price elas constant), and

Br=20.

the market for new cars is reported in the first column. The 10% tariff increases
the domestic share by 8.00 percentage points (to 76%). As the CES approxi-
mation predicts a change of 7.73, the error is about one quarter of one percent.
This extremely close fit is surprising in several respects. The CES approximation
makes three deviations from the true DGP: 1) monopolistic competition rather
than oligopoly, 2) a wrong functional form of demand (CES versus logit), 3) ho-
mogeneous consumers. We investigate the two first deviations (market structure
and functional form) in the next section and focus here on the role of heterogeneity.

The second line of Table 3 (Logit) imposes homogeneity in consumer tastes. We
calibrate o such that all consumers have the same price elasticity as the average
one in the first line (BLP). The CES prediction remains the same (7.73 pp) since
it still works with a price elasticity of 4.05. However, the true counterfactual falls
drastically to 3.85pp. This comes from the fact that while the logit demand system
implies a unitary pass-through rate, the pass-through elasticity, being the rate
divided by the markup (p/c), is substantially lower: Every percent increase in costs
by foreign firms triggers a price increase of 0.67 percent. Domestic firms therefore
gain much less market share than in the first line (the BLP case), where the
pass-through elasticity is close to 1—the value predicted by the CES-monopolistic
competition model.

We further investigate the role of heterogeneity in the third line (3 heterogeneity).
This is a hybrid case, as it imposes a single own-price effect a, but lets the Bf
coefficients on the four physical car characteristics (as well as preference for the
outside good) vary across households. The presence of B heterogeneity leads to
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a slight deterioration of the accuracy of the CES approximation as compared to
logit. The pass-through elasticity is slightly lower (0.65 vs 0.67) than in the logit
case and therefore exacerbates the deviation from CES. The rise in the bias from
3.88 to 4.40 also highlights Implication 1: the imposition of symmetric substitution
patterns damages the quality of the CES approximation. This occurs because under
B heterogeneity, the rising price of foreign cars leads to less substitution towards
the outside good.'? Thus, the new car market shrinks less under B heterogeneity
because the foreign varieties do not fare as badly. The net result is a smaller
increase of the share of domestic varieties as a share of new cars (the inside good).

The accuracy of the fit in the benchmark (BLP) case comes from a countervailing
effect of o heterogeneity. When the price sensitivity of consumers is heterogeneous
enough, a rise in prices triggers selection of consumers, such that only the less price
sensitive ones continue to buy the most expensive varieties. This raises the incentive
to pass more of the tariff increase into final prices. This effect is so strong in the
BLP data and estimates that the average pass-through elasticity, 1.13, is slightly
larger than one, bringing it closer to the CES-MC assumption.

The pass-through issue suggests a relatively easy way to improve the counterfac-
tuals assuming the CES model is true. Supposing one has a good estimate of
the average pass-through elasticity, equation (12) shows how to incorporate this
moment to give an approximation to a more complex model of variable markups.
These counterfactuals appear in the AHA column, showing the mean change in
domestic market share and the average bias. As expected, AHA reduces the bias
for the logit and for 3 heterogeneity. The halving of bias we see in those cases is
not replicated in the BLP setting. Since EHA was already very accurate, AHA's
Increase In pass-through leads to overshooting the target.

In the next section we proceed to a more complete investigation of the surprisingly
good fit of CES, where we vary all the relevant dimensions in sequence. Another
important difference is that the counterfactuals we report in Table 3 assume the
researcher has estimated the correct average own price elasticity. In contrast,
counterfactuals in the next section take the standard approach of trade economists,
and use tariff variation to estimate the elasticity of market shares to cost shocks.

12The fact that random coefficients make consumers much less likely to switch to the outside good
than in a homogeneous logit model is quantified in (Berry et al., 1995, Table VII).
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5. Dissection via simulation: what makes CES work?

Our dissection exercises set up a simulated version of the BLP data generating
process that is sufficiently close to be a valid representation of the original version,
while having the flexibility needed to dig into the causes of the failures or successes
of the CES approximation. Another important component of our approach is to
bring it closer to the actual questions and methods of trade economists that es-
timate the key cost elasticity parameter required to run counterfactuals on trade
costs variation.!3

5.1. Benchmark settings and four variations

Our benchmark simulations involve the following steps:

1. Sample 90 varieties m from the original BLP data with their four observed
attributes x,,, together with their unobserved quality, £,,, and marginal cost, ¢,
that we backed out using the inversion methods described in section 2.

2. Assign ten varieties to nine firms, with three firms in each of three countries.

3. Trade costs consist of an initial 10% tariff and an ad-valorem equivalent of
distance between countries, dave.

4. We calibrate three parameters to comply with three moments of the BLP data.
(a) ais chosen to set the average own price elasticity to 4,
(b) dave sets the domestic share equal to 68% (the domestic variety share of the
new car market in 1990 in the BLP data),
(c) B° is adjusted so that the outside good share is 90%.

5. Compute the initial BLP equilibrium. This starts with using the first order
condition (3) to solve for prices, followed by (2) and (1) to obtain equilibrium
market shares s,,, in each country n.

6. Estimate the tariff elasticity, 7, using equation (7).

7. We then raise the tariff on foreign cars by 10 percentage points and compute
new prices and ensuing s! . i.e. the new market shares for all firm-destination
combinations in the new equilibrium.

the EHA counterfactual prediction, using equation (6). Then
SCES which

8. Compute s/

mn?

aggregate over the domestic varieties in one country to compute A
we compare to the true changes ASBLF.

3Head and Mayer (2014) review a large number of such papers, recent examples include Boehm
et al. (2020).
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We repeat the steps above 1000 times, reporting averages and standard deviations
In the next subsection.

To investigate which features of the BLP initial setup make the CES approxima-
tion succeed or fail, we consider four deviations from the benchmark simulation
described above:

Monopolistic competition: \While our benchmark follows the data by having large
multi-product firms, Figure 2(b) and Table 4(b) of our dissection displays a
setting that approximates monopolistic competition: Each of the 90 varieties is
owned by a different firm. This allows us to see the effect of market structure,
while holding the features of the demand system constant.

Reduced outside good share: Figure 3(a) and panels (a), (b) and (c) of Table 5
increase the mean B to generate smaller shares (50%, 10%) of the outside
good. This leads to higher market shares for the nine “inside” firms.

Mixed CES: We display results using mixed CES in Figure 2(c) and Table 6, al-
tering the data generating process in two ways. Each household spends yj
on a preferred vehicle, with household choice probabilities being the same as
equation (2) except —a,p,, is replaced by —ay, Inp,,. In this specification s,
is measured in values instead of quantities. In the enumerated list describing
the DGP, the same steps are involved except the two computations of equilib-
rium (steps 5 and 7) use the mixed CES equations to solve for the equilibrium.
Appendix section A.1 gives a complete description of this setup.

Oligopoly estimation and EHA: Even without random coefficients, standard EHA
is incorrect because it does not capture the variable markups of oligopolists. This
can be fixed by modifying estimation to equation (9) and adjusting EHA to the
oligopoly case shown in equation (10). Figure 3(b) and the lower frame of
Table 6 reports the results.

5.2. Results of dissection simulations

The benchmark results, depicted in Figure 2(a) and the third line of Table 4(a),
show that, under BLP heterogeneity settings, EHA continues to predict tariff coun-
terfactuals very accurately. The CES approximation overpredicts the change in do-
mestic market share by one third of a percentage point.!* A fundamental difference

4Even though this simulation samples from the underlying car models and allocates them to nine
firms in three countries, it still retains the market structure of the original data: the average
concentration ratio (an untargeted moment) is 84% on average in our simulations, just below the
86% in the original data.
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from the simulation reported in Table 3 is that we now estimate n rather than as-
suming the average own-price elasticity is known. The cross-country tariff variation
in equation (7) estimates 7 = 4.29 on average. This is larger than the own-price
elasticity (4) because a heterogeneity causes firms to pass on to consumers more
than 100% of their costs increases. The average pass-through rate and elasticity
reported in the last two columns of Table 4 are 1.65 and 1.14, respectively. This is
because a heterogeneity creates a force that selects consumers according to their
individual elasticity, raising the pass-through elasticity from around two thirds to a
level just over unity.

Figure 2 — Consumer heterogeneity and market structure assumptions
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share of top 5 firms = 84% share of top 5 firms = 34% (otherwise as a)

Note: As in the BLP data, the share of outside goods is calibrated to 90%, the share of domestic cars is 68%, and we
set average €, to 4. The error bars are 1.96 standard deviations of the simulation outcomes for 1000 repetitions.

As in Table 3, we see as a consequence that the CES approximation works better
with the BLP full dimensions of consumer heterogeneity than in cases of no het-
erogeneity or only 3 heterogeneity (first two lines of Table 4(a)). However, the
bias in our simulations is now reduced to be smaller than one percentage point as
opposed to about four in the BLP data counterfactuals of Table 3. The primary
reason is that the estimated 7 (shown in the fourth results column) falls to 2.64
and 2.26 in those cases respectively. By capturing the much lower pass-through
implied by logit demand, the estimation step gives the CES approximation greater
flexibility to fit the underlying true data generating process. Rich substitution under
the form of B heterogeneity lowers the fit of the approximation but the first order
issue is the functional form of demand.

Of the two key features of the BLP setup, rich substitution and multiproduct
oligopoly, we have so far emphasized the former. How detrimental to the CES ap-
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Table 4 — The role of heterogeneity and market structure assumptions

Setting Agg. AS Passthrough
True Approx 7 rate elas

Panel (a): 9 firms with 10 models each

Logit 2.15 2.89 264 0.99 0.68

B heterogeneity 1.29 2.02 226 0.98 0.66

Mixed Logit 5.81 6.14 429 1.65 1.14
Panel (b): 90 firms with 1 model each

Logit 2.16 2.88 2.65 1.00 0.69

B heterogeneity 1.53 244 255 1.00 0.68

Mixed Logit 6.54 6.96 4.87 1.72 1.21
Panel (c): 9 firms with 10 models each

CES 4.42 442 396 1.25 1.00

B heterogeneity 3.64 407 377 1.23 0.98

Mixed CES 4.03 495 410 1.45 1.04

Note: As in the BLP data, the share of outside goods is calibrated to
90%, the share of domestic cars is 68%, and we set average ¢, to 4
for 1000 repetitions.

proximation is it to assume Dixit-Stiglitz market structure? In the first line of panel
(b) of Table 4, we assign each of the 90 models to an individual firm. Hence, the
market structure moves close to monopolistic competition for the “true” prediction.
Note that the pass-through rate is 1, as predicted by monopolistic competition un-
der logit demand. The pass-through elasticity equals the pass-through rate divided
by markup w, hence smaller than 1 (it averages at 0.69 over our 1000 replications).
The CES-MC prediction of unitary elasticity implies an overprediction of the re-
action of foreign firms and of domestic market share increase. In the second line
of panel (b), the local monopoly effect created by B-heterogeneity reinforces that
overestimation of the change in market share.

So far we have seen that CES-MC can approximate the aggregate predictions of
BLP DGP quite precisely. However this good fit is to a large extent a happy
coincidence of countervailing effects. To see this, we go to panel (c), where we
change demand of consumers to be mixed CES. An advantage of this specification,
is that, unlike mixed logit, mixed CES contains the CES model as a special case. In
the first line, the CES-MC approximation is almost perfect (up to rounding). This is
because a market share of 90% for the outside good leaves little room for oligopoly
to make a noticeable difference. As before, adding B-heterogeneity worsens the
prediction, but now instead of improving the fit, a-heterogeneity exacerbates the
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problem. However the main takeaways from panel (c) of Figure 2 are the stability
of the BLP outcomes and the accuracy of the CES approximation across all three
heterogeneity settings.

Figure 3 — The role of the outside good and the CES oligopoly correction
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Note: 1000 repetitions. As in the BLP data, the share of outside goods is calibrated to 90%, the share of
domestic cars is 68%, and we set average €, to 4. The error bars in panel (a) are 1.96 standard deviations of
the simulation outcomes, but those in panel (b) are standard errors of the bias.

Table 5 — Decreasing the share of the outside good

0G Agg. AS Passthrough
(%) True Approx 7 rate elas

90 5.81 6.14 429 1.65 1.14
50 6.88 7.04 478 1.78 1.19
10 7.90 7.72 5.14 1.90 1.21
Note: 1000 repetitions. The demand system is

mixed logit with both dimensions of heterogeneity
in all 3 lines.

Intuitively, the 90% outside good share in the BLP data should contribute to the
good performance of the monopolistic competition assumption used in the CES-MC
counterfactuals. Would CES-MC work as well for industries dominated by “inside”
goods? Figure 3(a) shows that as we decrease the outside good share (from 90%
on the left to 10% on the right), there is a greater increase in domestic market
share, both for the true (gray) and approximated (blue) outcomes. In the case of
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BLP this is because more oligopoly power induces firms to adjust markups more,
thus passing through a higher multiple of the tariff increase.!® The pass-through
elasticity can be seen to rise in Table 5 from 1.14 to 1.21. In the Exact Hat
Algebra, the higher change comes from a larger estimated m; the tariff elasticity
rises from 4.29 to 5.14. The true outcome rises faster than the approximation,
with CES first over-predicting and then under-predicting, but never more than a
fifth of a percentage point.

Table 6 — Adapting estimation & EHA to oligopoly helps

Agg. AS Setting  Passthrough
True Approx 7 rate elas

Monopolistic competition approximation

CES 3.74 4.04 3.64 1.23 0.97

B heterogeneity 3.48 4.02 3.62 1.23 0.97

Mixed CES 8.41 7.47 495 1.98 1.28
Oligopoly approximation

CES 3.75 3.75 400 1.23 0.97

0B heterogeneity 3.52 3.73 396 1.23 0.97

Mixed CES 8.41 7.59 5.75 1.98 1.28

Note: 1000 repetitions. The outside good share is calibrated to 10%
(instead of the 90% in the BLP data). All settings are calibrated to
hold the average brand-level own price elasticty at 4.

Our last dissection investigates whether CES can predict BLP outcome better if
the estimations and Exact Hat Algebra calculations are modified to account for
oligopoly.1® We use the lowest setting for the outside good, 10%, so as to maxi-
mize the role of oligopoly forces. To avoid confounding functional form with market
structure, we use the mixed CES setup for demand. Figure 3(b) shows the average
bias (the difference between the blue and gray lines in the preceding figures) in
each heterogeneity setting.!” The CES-OLY counterfactual predicts perfectly with
homogeneous consumers, correcting the upward bias in monopolistic competition.
With B heterogeneity, the oligopoly adjustments on the estimation and counterfac-
tual calculation reduce bias without fully eliminating it. The oligopoly adjustment
offers the lowest improvement in the setting with o heterogeneity. As seen in

15The higher amount of markup adjustment as the inside good market shares increase is a general
feature. However, without o heterogeneity, the adjustments would be downward, leading to less
complete pass-through and lower aggregate changes.

16Specifically, we estimate equation (9) and use equations (10) and (11) for Exact Hat Algebra.
17 Another change is that the error bars in this figure correspond to standard errors for the mean
rather than standard deviations of outcomes as in the previous figures.
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Table 6, the reason for this is that CES-OLY estimates a larger 7 (5.75 instead
of 4.95), which is going in the right direction because the pass-through elasticity
exceeds one. The EHA partially undoes this by imposing a change in markups that
entails incomplete pass-through (since it assumes CES under oligopoly). Thus,
the “mistake” that the monopolistic competition version of CES makes (omitting
oligopoly markup adjustment) is actually helpful in the presence of large amounts
of a heterogeneity.

6. Conclusion

Let us now summarize the potential problems facing the CES monopolistic com-
petition approach to industry-level trade counterfactuals in light of the theory and
simulation results in this paper. The first problem, that real world industries are
often multi-product oligopolies, leads to incomplete pass-through of tariff changes.
We offer two simple adjustments to the CES toolbox that take into account vari-
able markups in both the 1) estimation of the tariff elasticity, 2) computation of
counterfactuals via Exact Hat Algebra. As long as demand is in fact CES, these
modifications completely resolve the oligopoly problem. The second problem arises
when consumers buy just one unit of their preferred variety (rather than allocating
a constant fraction of their income to it). This changes the functional form of
demand to be logit, again implying pass-through elasticities well below one—even
under monopolistic competition. In principle, one could address this by using Exact
Hat Algebra for logit, as described in appendix A.4. That approach lies outside of
the scope of the current paper since it has not been taken yet in either trade or |O.

The third problem that confronts CES models relates to the changes in substitution
parameters that come from random coefficients. Consumer heterogeneity changes
the own- and cross-price elasticities. Unlike the oligopoly issue, the discrepancy
in substitution patterns is aggravated by a large share for the outside good. This
is because homogeneous CES and logit model predict large reallocations to the
outside good when it has a high share. There is a further problem unique to
heterogeneity in price responsiveness. Namely, when tariffs raise costs, the ensuing
price increases drive away the cost-conscious consumers, leading firms to raise
markups and thus pass along a higher share of their costs increases. The net
outcome of all the various effects pushing in different directions is hard to predict
in general. Using BLP data and parameters, the remarkable finding is that they
broadly cancel each other, leading CES to predict a counterfactual change that is
off by just a quarter of a percentage point.

The approach we have taken here offers broader insights. Every useful model
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abstracts from elements of reality. The BLP framework, for example, leaves out
the household’s dynamic decision of when to replace their car, as well as suppressing
the price mechanism operating in the used car market. Rather than treat a model
as inadmissible because of its simplifications, we suggest evaluating its ability to
approximate a richer truth. One case, seen here, where an approximation can
perform surprisingly well is when the model's “mistakes” offset each other. But a
more reliable case is when the approximation estimates a parameter that captures
a near-sufficient statistic for conducting the desired counterfactual. In this paper
the tariff elasticity plays that role, but the idea is much more general.
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Appendix
A.1. Mixed CES

The most common setup for random coefficients models is the unit demand mixed
logit introduced in Berry (1994). More recently Bjornerstedt and Verboven (2016),
Piveteau and Smagghue (2021), Adao et al. (2017), Redding and Weinstein (2019)
have worked with what the latter two papers refer to as mixed CES.*® The model
assumes individual consumers have CES utility but that their price elasticity is het-
erogeneous. It is micro-founded by starting with the variable consumption discrete
choice model of Anderson et al. (1992) (section 3.7), before extending it to in-
clude heterogeneity in the price responsiveness parameter. As in the mixed logit,
the MCES also allows for random coefficients on the consumers’ indirect utility de-
rived from product attributes. The key difference is that households spend constant
income shares rather than buying a single unit. Bjornerstedt and Verboven (2016)
report that the mixed CES "“turns out to be more appropriate than the unit demand
specification in our application: it results in a more plausible range of elasticities,
more reasonable markups, and yields more realistic average predicted price effects
for the merging firms.”

Denoting household income with with y;, the (indirect) utility of household h is

given by
K

Unih =Ny = @n I P+ Y BRxt + & + i (A1)
k=0
With an outside good whose indirect utility is normalized to zero and €,,,, distributed
Gumbel with scale parameter 1/m, the choice probability of household h for model
m takes the form:

_ (o B — ann P+ Em)
1+ 30 exp(oi Bixf —anlnpi + &)

P (A2)
where ap = nén, B, = nBp, and &, = né.,. Note that the specification of the
random coefficients does not impose a relationship between o and B, but it does
imply that all buyers view the unobserved quality &, in the same way. We adopt
this approach to parallel the one taken by 1O economists in the mixed logit models.
An alternative, considered by Redding and Weinstein (2019), places the household
heterogeneity in the n parameter. This has the consequence of making consumers
who are more price sensitive also more sensitive to differences in quality, both

18Bjornerstedt and Verboven (2016) refer to the model using the descriptive, but unwieldy “random
coefficients specification of the constant expenditure logit.”
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observed and unobserved. This approach Is attractive in many respects but we
have not pursued it in this version so as to limit the number of permutations to
consider.

Each individual spends y, on their preferred variety. Total expenditures on m are
therefore s,Y, where Y = >, v, and s, is the variety's market share—defined
in value. This market share is given by the expenditure-weighed average of the
individual probabilities from equation (2):

> o n Ponyn
= ZaTmih, (3

In the CES and (-heterogeneity cases, &, = 1 Vh, and therefore o, = 1. With
both types of heterogeneity active, &, = 1/y, where, as in BLP y; is log-normally
distributed using the distributional parameters from the BLP replication file. As
before, we calibrate m to match the average own-price elasticity of 4.

Sm

The multi-product firm's profit maximization problem is very similar to that used in
the mixed logit case, but it is important to note that the market shares, s, are all
measured in values, rather than in units. Letting the own price elasticity be denoted
with €, = —2%m and recalling that the Lerner index is L, = (pm — Cm)/Pm. the

alnpm
first order condition implies a price rule of

(em+1)

1 Olns; (A4)
[Em " s Z(J#’")EJF dlnpm L-’SJ]

Pm = Cm X

The formulas for own and cross price elasticities needed to compute prices are in
section A.2 of this appendix. This computation is done with the same fixed point
iteration as for the mixed logit case.

A.2. Derivatives and elasticities with random coefficients

A.2.1. Mixed logit

Since the individual partial effect of a change in p,, is

ath
OPm

= —apPmn(1 — Pup),

we obtain the partial derivative of market share with respect to price:

Bsm _ Zh % . _Zh ahth(l — th)

OpPm N N
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The own price elasticity Is:

_ th
2 P

olnsp, P D op CnPmn(1 — Prp) .
a In D S, N Pm ; mh h( mh) Wi mh
Model m's own elasticity therefore is a weighted average of the individual household
elasticities, which write

A . - _ah(]- - ]th)pm-

The weight w,,,, applied to each of those elasticities is the share of each household
in total sales of the model. Note that in the individual elasticity, a low p,, will be
associated with a high purchasing probability P,,,, both contributing to a lowering
of aalrn—]}:ﬂ- The individual response to price increases is therefore unambiguously
concave, getting more and more pronounced as the price goes up. At the model
level, however, a composition effect enters the picture. Low price models are
preferred by low income individuals which are assumed to have a larger sensitivity
for prices (a high ay). Those low price models therefore face high o, households
with larger weight w,,,, which raises the overall price elasticity. This introduces an

element of convexity, which can dominate the individual-level concavity.

Let us turn to cross-price effects: the impact of an increase in the price of model
m on demand for j. The partial effect of m's price on P}, is
6]P’J-h
Opm

= apPinPmn,

which yields

OP;
05 _ 2b 5oy _ 2on hPjpPrn
OpPm N N '

The cross-price elasticity is then

Olns;
onpm,

. Py
=p E WinapPmp,  With  wj, = ——.
T P

Again, this is a weighted average of the individual choice probability cross elastici-
ties,
Oln Pjh

onpm

= ah]P)mhpm-
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A.2.2. Mixed CES

The individual partial effect of a change in p,, Is

ath O
= ——Pup(1 —Pmn),
om ™ ")

The partial derivative of market share with respect to price is

65,,, o Zh %Ip;r:;th
Opm Y

The own price elasticity is:

Olns,,
olnpm,

_ Pmnyn
Z h Prnyh

= — Z wmhah(l — ]P)mh)r with Wmh (A5)
h

Model m's own elasticity therefore is a weighted average of the individual elastici-

ties,
oln ]P)mh

olnpy,

= —op(1 = Ppmp),
where the weight w,,, is the share of each household in total sales of the model.

Turning to cross-price effects: the impact of an increase in the price of model m
on demand for j. The partial effect of m's price on P}y, is

G]P)J-h ap

= —jplmp,

OPm  Pm

which yields a partial derivative of market share as

oP;
0s; _ >k apeYn _ > onohPinPmnyn
Opm Y pmY '

Lastly, multiplying by p,,/sj, where s; = (>, Pinys)/ Y, the cross price elasticity is

Olns; _ Zh aplPipPrmnys
olnpn, siY

Pthh
> nPinyn

= ijhahIP’mh with Wip = (A6)
h

Again, this is a weighted average of the individual choice probability cross-elasticities,

Oln Pjh

= apPmn.
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A.3. Pass-through rates and elasticities

The derivation of theoretical pass-through starts from FOC for model m:

Olns
Sm+ (pm - Cm)ﬁ = Pm — (pm - Cm)em =0,
m
with €, = —gl';‘ﬁ > 0 being the own price elasticity. Implicit differentiation gives
apm _ —€m
OCm  —€m+1—(pm—Cm)52

Using the first order condition to replace (pm — C¢n) = Pm/€m, the pass-through
rate simplifies to
Opm €m _ Olnep,

= h E,=—.
oc, €n—1+E, where olnpp,

E., is the super-elasticity of demand, i.e. the elasticity of own price elasticity
with respect to a change in own price.!® Under CES demand and monopolistic
competition, €,, is a constant. Hence, E,, = 0, and the pass-through rate is a
constant equal to €/(e — 1). The pass-through elasticity is

Olnpy, €m o Cm €n— 1
olnc, €n—1+En pm €m—1+E,

(A7)

The sign of E,, is therefore the determinant of whether the pass-through elasticity
is greater or smaller than one. In the Dixit-Stiglitz case, E,, = 0 implies a unitary
pass-through elasticity.

Under homogeneous logit, €, = apm(1—s4), and E,, = [1 + ap,sy] . Since a > 0,
the super-elasticity is positive (greater than one, its value when the market share
of m approaches 0) and pass-through is incomplete.

The mixed logit case is more complex. Recall that BLP demand at the household-
model level implies % = —apPun(l — Ppp), and therefore the following own

- B
elasticity:
. Zh Olh]P)mh(]. — ]P)mh) . _85m

Pm .
€ s, wit N 3pn

¥Bulow and Pfleiderer (1983) appear to have been the first to show, in their equation (3'), the
relationship between the pass-through rate and this measure of the curvature of the demand curve;
Mrazova and Neary (2017) consider the role of curvature in many different families of demand
curves.
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Taking the derivative of €, with respect to price,

Oem _ Xm | OXmPm  PmXm OSm

OPm  Sm  OPmSm  S& Opm

Using §2= = —X,,, one can re-write

O¢m  Xm [ OXumpPm  PnXm] Xm[. 0InXy
: 14 oom P P }:—{1 "

N +8Inpm

m  Sm Opm Xm  Sm " Em] '

Hence the super-elasticity is

Oe oln X
Em YEm pm — |1 e+ m ’
apm €m oln Pm
where % is the elasticity of the slope of demand to a change in price. One

Alinp
therefore needs to study how X, varies with p,,

dIn X,, Zh Zﬂ”mah( —2Pmn) ppm _ Pm s Q2P mn(1 = Pop) (1 — 2P,p)

oln Pm N Xm Xm N

hence,
6InXm . Zha,%Ith(l _th)(1_2pmh)

= —p ,
olnpm " D on hlPrp(1l —Pyp)
and the super-elasticity is

Zh ArPrp(1 = Ppp) (1 — 2Pp)

E. 1+e,—
Zh O‘h]P)mh(l - ]P)mh)

A.4. Exact Hat Algebra for logit

The derivation starts from an adapted version of the equation in Anderson et al.
(1992)p. 45. Let us first state the market share equation for m in n under logit
(no consumer heterogeneity):

- exp(Zfzo ,BkX,l; — QPmp + Emn)
L+ 3 e BRX — apin + €n)

Denote the change in m’'s price in n as Apm, = P, — Pmn, the counterfactual
market share of mis

(A8)

5/ _ Smn(eXp(_aApmn))
™ Son =+ 2 Sin(exp(—alApjn))
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Denoting the proportional change X = x’/x and with the additive markups p,,, =
Cmn + Wmn IMplied by logit demand, we obtain

P exp(—alAcmn + Atbmn])
" son + Zj sinlexp(—alAci, + Apjn])]

(A9)

The most natural counterfactual tariff change under logit demand is a specific duty
of d dollars per unit, in which case Acy, = dimyn, | being the country where firm
m is located. In the monopolistic competition case, the markup Is constant, and
equation (A9) is enough to compute the new equilibrium based on three require-
ments: initial market shares, the structural parameter driving price response (),
and the policy change d. With ad valorem tariff rate of t per dollar, the change in
unit costs becomes Acy, = ti(mynCm- This makes the cost change variety-specific.
With price, characteristics, and market share data, ¢, can be obtained by inver-
sion of the first order condition (and assuming there is an estimate of a). This
increases the informational requirements relative to the CES case or the logit case
with specific duties.

With non-atomistic varieties, we have to account for endogeneous markup adjust-
ment. Under Bertrand oligopoly, the additive markup of m only depends on the
market share of firm f to which m belongs (Nocke and Schutz, 2018, study more
generally the properties under which the market share of a multi-product firm is
sufficient to compute its markup and ensuing market power):

1

m, Vm € jf, with Sfrp = Z Smn- (AlO)

meJs,

Wmn = HUfn =

The change in markup is computed as

1 1 1 D D
Ay = — - - . Vme Jr,  with &, = &=meIe T
& |1 —5npsr  1—5f Sfn

(A11)
Combining (A9) with (A11), the elements needed to compute §,, are the initial
observed initial market shares s, the policy change d, and a. With these formulae
for §,,, and i, in hand, the rest of the Exact Hat Algebra algorithm proceeds as
with the CES case, iterating until a fixed point is reached.

We can estimate a with an iterative procedure following the logic of the mixed
CES case in the main text. We start by taking logs of (A8) in the case of specific
tariffs where pp, = wen + G + digmyn:

InSpmn = _adi(m)n — Qfp + FE, + FE, + Emn,
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where the structural interpretation of fixed effects are FE,, = Zszo Bfxk — acp,
and FE, = —log [1+ >, exp(}_, B*Xf — apjn + &n)]. Start with a guess called
a. With firm market share s¢,,, we can compute the equilibrium markup u?n using
equation (A10). This markup is passed on the left-hand-side, and combined with
the log of market shares to yield the following regression for the /th iteration

In s, + a//J,Ifn = —aH_ld,-(m)n + FE,, + FE, + &mn. (A12)

The coefficient on per-unit trade costs d provides a new estimate o/*!, with which
we can recalculate markups. The process iterates from / = 0 until o/t = o/
(within tolerance) at which point we have an estimate &, consistent with Bertrand
oligopoly pricing.
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