<u>**Ma**</u>croeconometrics of the <u>**G**</u>lobal <u>**E**</u>conomy (MaGE) Version 2.1 (revision 60)

Jean Fouré

September 3, 2012

Contents

1	Licensing	1
2	Model description	2
3	Model's How To 3.1 Run the baseline scenario 3.2 Run custom scenarios	2 2 2
4	Parametrization	3
5	Results 5.1 Full results 5.2 Selected Results 5.3 Output for MIRAGE	3 3 5 6

1 Licensing

MaGE model is licensed under the Creative Commons Attribution - Non Commercial 3.0 Unported License. With this license you are able to use, copy, modify the source code of MaGE for non-commercial purposes, given that you cite its original reference document.

Further details on the CC-BY-NC license can be fount on Creative Commons website

http://creativecommons.org/licenses/by-nc/3.0/deed.en_US.

The reference document to be cited is:

Fouré, J., Bénassy-Quéré, A. and L. Fontagné (2012), 'The Great Shift: MaGE Projections for the World Economy at the 2050 Horizon', CEPII Working Paper 2012-03.

Please also note that you will need a valid license for Stata 11 or greater to run the model. In addition, you may have to verify that you are able to use the data we provide with the model.

2 Model description

MaGE is a macroeconometric model of the world economy made for projecting the global shifts of current century. It is based on a three-factor production function of labour, capital and energy, plus two forms of technological progress, we propose a long-run growth scenario for 147 countries and a time horizon of 2050 relying on the model MaGE (Macroeconometrics of the Global Economy). Our model is fitted with United Nations and International Labour Office labour projections, and econometric estimations of (i) capital accumulation, (ii) savings rate, (iii) relationship between savings and investment rate, (iv) education, (v) female participation, and (vi) technological progress (which includes energy and total f actor productivity). Our study provides five novelties. First, we account for energy constraints by including its consumption in the production function and by taking account of rents accruing to oil exporting countries. Second, we estimate a non-unitary relationship between savings and investment, departing from assumptions of either a closed economy or full capital mobility. Third, we model female participation rates consistently with education catch-up. Fourth, we account for the 2008-09 global crisis by initialising our projection model in 2013 while relying on IMF short-term forecasts between 2010 and 2012. Finally, we disentangle real gross domestic product (GDP) growth rates from relative price effects through a consistent Balassa-Samuelson effect.

3 Model's How To

3.1 Run the baseline scenario

Once the source code is extracted in a local folder, you only have to modify the file <code>0.master-file.do</code> located in the root folder. You have to set the <code>\$BL_directory</code> variable to the value of the complete absolute path to the root directory of the model.

You can also check that the the scenario selected (its name is contained in the **\$BL_scenario** variable) is the one you want to run (typically, it should be **reference_2050** or **reference_2100**).

3.2 Run custom scenarios

If you want to run custom scenarios, you are invited to create a scenario file (let's say my_scenario.do) and locate it in the Scenarios folder. Our advice is that you base your own scenario on one of our reference scenario, by first loading the reference scenario, and then modify the parameters you want. Details of parametrization are given in Section 4, especially in Table 3. Here is an example of how you could implement a simple scenario with different assumptions on population.

```
** load reference values for parameters
do "Scenarios\reference_2050.do"
** custom parameters
```

```
global un_scenario = "low"
```

Once your scenario is defined, you are able to launch it by modifying the <code>0.master-file.do</code> file in the following way. The scenario name has to be the same name as your previously created do-file.

```
** define scenario name
global BL_scenario = "my_scenario"
** run the scenario
do "Do\0.scenario.do"
```

4 Parametrization

. . .

There are some parameter that have to be set before running a scenario. These are displayed in Table 1.

TABLE 1	1:]	Run	PARAMETERS	
	~			

Description	Comment
Model's location	Absolute path
Scenario name	The scenario .do is needed
Force database creation	Use to force all steps for first scenario
	Model's location Scenario name Force database creation

The following parameters in Table 2 may **not be modified** without changing the source code of the model.

Finally, parameters listed in Table 3 are used to define scenario variants.

Parameter name	Description	Comment
\$BL_version	model version	
<pre>\$energy</pre>	Energy data source	To be deprecated
\$sigma	KL-E elasticity of substitution	
\$rho	Computed from sigma	
\$alpha	KL share	
\$deprec	Depreciation rate	
<pre>\$fe_adapt</pre>	Toggle Fixed-effect modification	0 or 1
<pre>\$fe_remove</pre>	Toggle non-significant fixed effects removal	0 or 1
<pre>\$educ_mode</pre>	Way of measuring education	To be deprecated
\$moy_start	Starting of reference period	
\$moy_end	End of reference period	
<pre>\$sav_mode</pre>	Savings rate computation mode	To be deprecated "fe" for fixed effect /
		"moy" for ref period
<pre>\$tfp_mode</pre>	TFP computation mode	To be deprecated "fe" for fixed effect /
		"moy" for ref period
<pre>\$tfp_lead</pre>	Way of computing TFP leaders	max, mean4 or mean5

TABLE 2:	Model	GROUND	PARAMETRIZATION	(DO	NOT	MODIFY)
----------	-------	--------	-----------------	-----	-----	---------

5 Results

Results of MaGE are produced in excel .xls format or Stata .dta format. Several options are available to look at the results.

5.1 Full results

Full results are available in .dta format, and are located in the %MODEL_FOLDER%\Results\DTA folder. The file corresponding to scenario scen is called mage-2.1-scen-FULL.dta. Variables of interest are displayed in Table 4.

The first parameters are identifying observations. Several country encodings are available.

The following parameters are the output of econometric estimations. These are the parameter used for projection. Finally, the variables of interest are displayed. Table 5 presents main variables of interest.

TABLE 3: SCENARIO PARAMETRIZATION	
-----------------------------------	--

Parameter name	Description	Comment
\$sigma_2012	KL-E elasticity for projections	
\$cobbdouglas	Toggle for CES/Cobb-Douglass	
<pre>\$end_year</pre>	Target projection year	From 2013 to 2100
<pre>\$e_price</pre>	Energy price scenario	"high", "med" or "low"
\$institutions	Ref period convergence	"cv2100" or nothing
\$un_scenario	UN population variants	"med", "high" or "low"
<pre>\$migration_eu</pre>	Additional migration in thousands	
<pre>\$migration_ssa</pre>	Additional migration in thousands	
<pre>\$migration_med</pre>	Additional migration in thousands	
<pre>\$activity_rate_mode</pre>	DEPRECATED	
<pre>\$female_participation</pre>	Toggle for female participation	0 or 1
<pre>\$closed_economy</pre>	S-I relation modification	0 for FH / 1 for I=S / 2 for all
		OCDE value / 3 Deprecated / 4 for
		convergence towards I=S
<pre>\$tfp_slowing</pre>	TFP exogenous slowing	≤ 1 for slowing ≥ 1 for accelera-
		tion
<pre>\$educ_cv</pre>	Convergence modification for education	Half-life time modification in per-
		cent (e.g. $= 0.5$ for half Half-Life
		time, and then faster growth)
<pre>\$energ_exo</pre>	Exogenous E productivity modifier	In percentage. Only influences the
		consequence of B on Y, and not B
		itself
	•	•

TABLE 4: IDENTIFYING OBSERVATIONS

Variable name	Description
code_wb	World Bank country code
name	World Bank country name
code_bit	International Labor Organization country code
code_un	United Nations country code
zone	INGENUE zone classification
year	Year of the observation
code_mirage	GTAP country code
code_gtap	GTAP zone classification
ocde_dummy	0-1 dummy for OECD membership
income_class	United Nations income classification (Low, Medium or High)
ue_dummy	0-1 dummy for European Union membership
code_z	Custom regional classification
US_dummy	0-1 dummy for the USA
CCCP_dummy	0-1 dummy for former USSR membership

Variable name	Description	Unit	
age1-age15	Population by age group	number of people	
f_actpop	Female active population	thousands of people	
p_oil	Oil price	constant 2005 USD	
H_pred	Tertiary education	Share of working age population	
Hs_pred	Secondary education	Share of working age population	
Acorr_pred	Oil-corrected TFP		
Bcorr_pred	Oil-corrected Energy productivity	constant 2005 USD per barrel	
A_pred	Non-corrected TFP		
B_pred	Non-corrected energy productivity	constant 2005 USD per barrel	
K_pred	Capital stocks	constant 2005 USD	
Ycorr_pred	Non-oil GDP	constant 2005 USD	
Y_pred	Total GDP	constant 2005 USD	
E_pred	Energy consumption	barrels	
Srate_pred	Savings rate	% of GDP	
Irate_pred	Investment rate (GFCF)	% of GDP	
Y_USD_cst05_p05	Total GDP	constant 2005 USD	
Y_PPA_cst05_p05	Total GDP	constant 2005 PPP	
Y_USD_crt	Total GDP	Including real appreciation	
Ycap_PPA_05	GDP per capita	2005 PPP	
RER_pred	Real exchange rate		

TABLE 5:	Selected	VARIABLES	FROM	FULL	RESULTS
----------	----------	-----------	------	------	---------

5.2 Selected Results

Selected variables are displayed in other files. These are located in the <code>%MODEL_FOLDER%\Results\DTA</code> folder. The files are called <code>mirage-2.1-scen.dta</code>. These variables are the one to be used in MIRAGE.

Variable name	Description	Unit
Oil_price	World average oil price	2005 constant USD
TotPop	Total population	Number of people
ActPop	Active population	Number of people
H_pred	Tertiary education	Share of working-age population
Hs_pred	Secondary education	Share of working-age population
GDP	Gross Domestic Product	Constant 2005 USD
SAV	Savings rate	Percentage of GDP
INV	Investment rate (fixed capital formation)	Percentage of GDP
GDP_growth	GDP growth	Annual percentage change
Energy_ef	Energy productivity	Constant 2005 USD per barrel
TFP	Total Factor Productivity	
CC	Current Account balance	Constant 2005 USD
SkilledPop	Skilled active population (tertiary)	Number of people
Unskilled_ActPop	Unskilled active population (less than tertiary)	Number of people

TABLE 6: VARIABLES FROM SELECTED RESULTS

5.3 Output for MIRAGE

The selected variables are also directly available to use with MIRAGE. There are a few more steps in order to use the gms file creator. You have to call the file %MODEL_FOLDER%\Do\3.projections\5.export_all.do at the end of your 0.master-file.do, after having set at least a base scenario \$base_scen and optionally other scenarios \$additional_scen separated by empty space (if no additional scenarios, only set the variable to ""). Exemple:

```
global base_scen = "reference_2100"
global additional_scen = "scenario1 scenario2"
```

```
do "Do3.projections5.export_all.do"
```

This will generate .gms files in the <code>%MODEL_FOLDER%\Results\XLS\MIRAGE</code> folder. These files can then directly overwrite their antecedents in MIRAGE folder.