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I Abstract

This paper documents a fundamental problem in applied gravity estimation: the variance of gravity estimates becomes
prohibitively large when policy regressors are parse. | define sparse regressors as dummy variables that equal one in
fewer than 100 to 500 observations depending on the setting; a common characteristic of trade policies such as free trade
agreements. Through Monte Carlo simulations calibrated to match previously established data generating processes in the
literature, | demonstrate that the variance of coefficient estimates is approximately inversely proportional to the number of treated
observations, making reliable statistical inference impossible when policy variables are infrequent. This variance problem is
distinct from well-known issues related to high-dimensional fixed effects and affects both OLS and PPML estimators regardless
of specification complexity. The severity of this variance problem depends on the magnitude of the true underlying coefficient:
the variance problem is severe and practically prohibitive for moderate coefficients (such as those typically found for many
trade policy effects), but becomes negligible for large effects. To address this issue, | propose Ridge regularization as a practical
solution that reduces estimate variance while introducing minimal bias. The main contribution however is not advocating for
Ridge regularization, but rather highlighting that variance is often the dominant source of uncertainty in gravity estimation when
dealing with sparse policy variables, underscoring fundamental limitations of gravity models for evaluating infrequent policies
with moderate effect sizes. These findings have implications not only for the international trade literature but also for other fields
that employ gravitytype specifications, including migration and macroeconomics.
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1 Introduction

Empirical analyses of international trade frequently rely on gravity models, which have
become a central framework for quantifying policy effects. The gravity equation has a long
history in economics, with early applications dating back to Tinbergen| (1962) and P6yhonen
(1963)). However, the modern gravity equation builds on the foundational work of |Anderson
and Van Wincoop, (2003), who formalized its theoretical basis by introducing multilateral
resistance. This theoretical foundation resolved the long-standing criticism that gravity
models lacked microeconomic foundations.

While this paper focuses on trade applications, it is important to note that gravity
equations are widely used across multiple fields of economics beyond international trade,
including migration economics where they model bilateral migration flows between countries,
and macroeconomics where they are applied to study capital flows, foreign direct investment,
and other cross-border economic phenomena. The variance issues documented in this paper
therefore have implications not only for the trade literature but for the broader empirical
economics literature that relies on gravity-type specifications.

A major methodological advance came from [Santos Silva and Tenreyro| (2006]), who rec-
ommended Poisson pseudo-maximum likelihood (PPML) estimators to tackle the widespread
problem of heteroskedasticity in trade data, making coefficient estimates more reliable. This
methodological contribution was crucial because traditional OLS estimation of log-linearized
gravity equations can produce biased estimates in the presence of heteroskedasticity, which
is pervasive in trade data.

Later research by Baldwin and Taglioni| (2006|) highlighted the importance of includ-
ing high-dimensional fixed effects to account for multilateral resistance and reduce omitted
variable bias. More recent work, such as Weidner and Zylkin (2021), has focused on the
challenges of high-dimensional heterogeneity. The computational feasibility of estimating
these complex models has been greatly enhanced by recent software developments (Correia
et al., [2020; Bergél 2018)).

Despite these advances, the literature has devoted limited attention to the behavior of
estimator variance when the regressors of interest, such as policy dummies for free trade
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agreements (FTAs) between two countries, are infrequent or sparse. Previous work address-
ing issues arising when estimating gravity equations includes |[Baldwin and Taglioni| (2006]),
who discussed various pitfalls in gravity estimation but did not focus specifically on variance
issues with sparse regressors, and Head and Mayer| (2014)), who provided a comprehensive
review of gravity models but similarly did not emphasize the variance problems associated
with infrequent policy variables. More recently, [Egger and Tarlea (2015) addressed cluster-
ing issues in gravity models, and [Yotov et al.| (2016) provided guidance on structural gravity
estimation, but neither work specifically tackled the variance problem with sparse regressors.

The issue of sparse regressors is particularly relevant given the empirical findings in the
literature. Baier and Bergstrand| (2007) found that many FTAs have insignificant effects
when estimated using traditional methods, a finding that has been replicated in numerous
subsequent studies. The pattern of insignificant FTAs effects has also been documented
across various datasets and specifications, as shown by studies using the CEPII gravity
database (Mayer et al. 2019), the DESTA database (Dir et al., 2014), and Mario Larch’s
RTA database (Egger and Larch| 2008)).

In cases with sparse regressors, the standard errors of estimated coefficients can become
so large that statistical inference is severely compromised, even when the point estimates
themselves are unbiased or consistent. This paper aims to bridge that gap by systematically
analyzing the variance properties of gravity estimators in the presence of sparse regres-
sors, thereby complementing earlier variance analyses in nonlinear models such as those
by |(Cameron and Trivedi (2013). By doing so, it provides new insights into the trade-offs
between bias and variance in applied gravity estimation and offers practical guidance for
researchers confronting similar challenges in empirical work.

I document the size of this variance problem with Monte Carlo experiments calibrated to
follow the data-generating processes (DGPs) in [Santos Silva and Tenreyro| (2006) for cases
without fixed effects, and [Weidner and Zylkin| (2021)) for cases with three-way fixed effects. I
define sparsity as the condition where the regressor of interest is infrequent, such as a dummy
variable that equals one in fewer than a given number of observations that ranges from 100
to 500, as it is below such a threshold the variance of the estimates becomes prohibitively
large. This is a common characteristic of policy dummies such as FTAs, which are typically
signed by only a small fraction of country pairs in any given year. A key finding of this
analysis is that the severity of this variance problem depends critically on the magnitude of
the true coefficient being estimated: while moderate coefficients typical of trade policy effects
suffer from severe variance problems that can make inference impossible, large coefficients
are much less affected.

To address this issue, I propose a simple ridge penalty applied to the OLS estimator.
Ridge regularization effectively reduces the variance of the estimates without significantly
biasing them. However, this approach is not a panacea. It does not eliminate the fundamental
limitations of gravity models when the regressors of interest are sparse, that is, when the
regressor of interest is infrequent, such as a dummy variable that equals one in fewer than a
given number of observations (usually between 100 and 500), below which the variance of the
estimates becomes prohibitively large. This is a common characteristic of policy dummies
such as FTAs, which are typically signed by only a small fraction of country pairs in any
given year. Instead, it provides a only a practical but incomplete mitigation of the variance
problem, allowing researchers to draw, relative to other methods, more reliable inferences
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from their estimates.

However, the main message of this paper is not that ridge-regularized OLS is a solution.
Rather, it is that the variance of estimates is often the dominant source of uncertainty in
applied gravity estimation when the regressors of interest are sparse, that is, infrequent
dummies that equal one in fewer than 100 to 500 observations. This finding underscores the
limitations of gravity models when evaluating trade policies with sparse regressors, which is
the case for many trade policies such as FTAs. Importantly, this variance problem depends on
the magnitude of the true underlying coefficient. For moderate coefficients, which are typical
of most trade policy effects documented in the literature, the variance problem is severe
and can render statistical inference practically impossible. However, for large coefficients
where the economic signal is strong, the variance issue becomes negligible. This coefficient
magnitude dependence has important implications for policy evaluation, as it suggests that
gravity models may be fundamentally limited in their ability to detect moderate policy effects
when regressors are sparse, even when such effects are economically meaningful.

Empirically, I re-estimate the effect of FTAs on bilateral trade flows and compare the
results obtained with ridge-regularized OLS, conventional OLS, and PPML. I put these
results in relation with the number of observations where the regressor of interest equals
one.

The remainder of the paper is organized as follows. Section [2| presents simulation results
that document the variance properties of OLS and PPML estimators in the presence of sparse
regressors, defined as dummy variables that equal one in fewer than 100 to 500 observations,
both with and without high-dimensional fixed effects. Section |3|introduces Ridge regulariza-
tion and demonstrates how it can substantially reduce estimator variance while maintaining
negligible bias. Section {4| applies these insights to empirical data, reassessing the impact
of FTAs on bilateral trade flows. Section |5| concludes by summarizing the implications for
applied gravity estimation and policy evaluation.

2 The variance of gravity estimates with sparse regres-
SOrs

In this section I document the variance properties of OLS and PPML estimators in the
presence of sparse regressors, both with and without high-dimensional fixed effects. The
main focus is on the effect of regressor sparsity, not the dimensionality of fixed effects, on
estimator variance. I separately present simulations of estimations without fixed effects and
with three-way fixed effects. Simulations for the subsection without fixed effects follow the
data generating processes (dgps) defined in [Santos Silva and Tenreyro| (2006). Simulations
in the subsection with three-way fixed effects follow a slightly simplified version of the dgps
specified in |Weidner and Zylkin| (2021).

A sparse policy variable is one that is infrequent, such as a dummy variable that equals
one in fewer than a given number of observations (typically between 100 and 500), below
which, as shown below, the variance of the estimates becomes prohibitively large. The
severity of this variance problem depends on the magnitude of the coefficient: it is severe for
moderate coefficients but negligible for large effects.
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2.1 Simulation Results without Fixed Effects

The first design follows [Santos Silva and Tenreyro (2006)). I simulate data from the following
model:

Elyi|x] = exp(Bo + Brz1; + B222:) (1)

In each Monte Carlo replication, I generate a synthetic dataset with n = 1,000 observa-
tions. The main regressor of interest, X5, is a dummy variable that equals one with a low
probability (i.e. 0.0034), mimicking the sparsity of policy dummies such as FTAs in real
trade data. I set 5 to a small positive value (i.e. 0.1). The continuous regressor X; and
the intercept By are drawn from standard normal distributions. The outcome variable, Y,
is constructed as Y = exp(By + X + 2 X3) - i, where 7 is a multiplicative error term.

Following Santos Silva and Tenreyro| (2006)), I consider four different cases of heteroskedas-
ticity:

o Case 1: 02 = pu(z;8)% Vg X] = 1.

o Case 2: 02 = pu(a,8)"; VIl X] = ula:).

o Case 3: 02 = 1;V[y| X] = pu(2:8)2.

o Case 4: 02 = pu(ayB) " + €55 V[l X] = (i) + e ()2,

For each simulated dataset, I estimate both OLS (applied to log(Y')) and PPML (applied
to Y'). I record the coefficient on X, for each method, along with its standard error and test
statistics. I repeat this process for 10,000 Monte Carlo replications in each scenario.
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Figure 1: Monte Carlo simulations without fixed effects

Figure|l|shows the distribution of the estimated coefficients for the four heteroskedasticity

cases. The true coefficient is S, = 0.1, PPML estimates exhibit substantial variance in all
cases. In contrast, OLS estimates are more tightly clustered around the true value, albeit
with a substantial bias.

The results highlight a tradeoff between bias and variance across estimators. OLS con-
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sistently exhibits lower variance across all cases, but often at the expense of upward bias in
the estimates. This is most evident in Case 1, where the OLS mean is 0.35 compared to a
PPML mean of 0.09.

PPML tends to deliver estimates that are more robust to bias, particularly under con-
ditions where the underlying data may violate the classical assumptions required for consis-
tency of OLS. However Case 4 shows that it is not always empirically true. In this case, the
simulation show that both the bias and variance of the PPML estimator are substantially
higher than those of OLS.

Note that when the estimated variable is not sparse, that is, when it equals one in
more than 500 observations, PPML remains consistent and unbiased, and the variance is
of little concern. In this case, PPML is undisputedly the best estimator. The results of
the simulations of this canonical case are shown in Appendix [A] Note that the severity of
the high variance problem depends also on the magnitude of the coefficient. For moderate
coefficients it is severe while for large effects, such as the one presented in Appendix [A] it is
negligible.

2.2 Simulation Results with Three-Way Fixed Effects

I then follow a second design that adopts the three-way fixed-effects framework of Weidner
and Zylkin (2021). This framework has become increasingly important in the gravity litera-
ture as it helps address the incidental parameters problem that arises with high-dimensional
fixed effects. The three-way fixed effects specification (exporter-time, importer-time, and
country-pair fixed effects) has been widely adopted following the recommendations of |Head
and Mayer| (2014) and [Yotov et al.| (2016)), who emphasized the importance of controlling
for multilateral resistance terms and unobserved heterogeneity in trade costs.

The computational challenges associated with estimating high-dimensional PPML mod-
els have been addressed by recent software developments. |Correia et al. (2020) developed
the ppmlhdfe command for Stata, while Bergé (2018) created the Fixest package for R,
both of which enable efficient estimation of PPML models with multiple high-dimensional
fixed effects. These computational advances have made it feasible to estimate the complex
specifications required for modern gravity analysis.

I follow here a slightly simplified version of the dgps proposed in [Weidner and Zylkin
(2021)). The model for the dgp is:

Elyila] = Aije = exp(2};,8 + o+ v + 1) (2)
The observations including the error term are now generated as follows:
Yijt = NijtWijt (3)
where:

1. The model fixed effects, a,y and 7 follow a normal distribution with 0 mean and 1/16
variance.

2

2. wiji, the error term follows a log normal distribution with mean 1 and variance o,
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To introduce different heteroskedasticity patterns I also follow |Weidner and Zylkin| (2021)),
which proposes a modified version of |Santos Silva and Tenreyro| (2006) to fit the three-way
fixed effects setting. I therefore consider the following four cases:

e Case 1: ijt = )\Z_Jf

-1

o Case 2: 07, = \jj;

o Case 3: 07, = 1

o Case 4: 07}, = 0.5)\;]% + 0.5t

Figure [2|shows the results of 1000 simulations of equation[3] The results confirm that in a
setting with three-way fixed effects OLS is more biased than PPML. They also show however
that the variance of the PPML estimator is considerably larger than the variance of the OLS
estimator. In each of the four cases the ratio of the OLS to PPML variance is respectively
0.78 , 0.75 , 0.71 , and 0.56 . This means that the variance of the PPML estimator is
between 1.3 and 1.8 times larger than the variance of the OLS estimator, depending on the
heteroskedasticity case.
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Figure 2: Monte Carlo Simulation of estimates with infrequent variables and Three-way fixed
effects

Figure[3|shows the estimated coefficients and their p-values for the four heteroskedasticity
cases. The four panels illustrate a direct consequence of the high variance of the PPML
estimator: the estimated coefficients are not statistically significant in most cases, even

though the true coefficient is f = 0.1. The OLS

10

estimates, while more biased, are more
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stable and yield more significant results. Again, the lack of significance is primarily a result
of the sparsity of the regressor, not the inclusion of high-dimensional fixed effects.
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Figure 3: Estimated coefficients vs p-values
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2.3 Number of observations and variance

To better understand how the number of sparse observations affects the variance of estimates,
I conduct a simulation that varies the number of observations where the treatment variable
equals 1, while keeping the total sample size constant. This analysis helps quantify the
relationship between the frequency of treatment and the precision of estimates.

I generate datasets with a fixed total sample size of 1000 observations, but systematically
vary the number of observations where the binary treatment variable equals 1. For each level
of treatment frequency, I run multiple simulations and compare the performance of OLS and
PPML estimators.

Figure 4| shows the results for the case without fixed effects. Panel (a) displays how the
mean of the estimated coefficients varies with the number of treated observations. Both OLS
and PPML estimators remain approximately unbiased across different levels of treatment fre-
quency, with estimates clustering around the true value of 0.1. Panel (b) shows the variance
of estimates, revealing that both estimators exhibit dramatically higher variance when the
treatment variable is very sparse. The variance decreases rapidly as the number of treated
observations increases, but levels off after reaching a sufficient number of observations.

efficient

Mean Estimate of X2 Co

100 150 25 s 100 150
Number of Observations with X2 = 1 Number of Observations with X2 = 1

(a) Mean of Estimates (b) Variance of Estimates

i Method
3

100 150
Number of Observations with X2 = 1

(c) Mean P-values

Figure 4: Effect of Treatment Frequency on Estimation Performance (No Fixed Effects)

Panel (c) of Figure 4 shows the mean p-values across simulations. When the treatment
variable is very sparse (few observations with X, = 1), the high variance leads to poor
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statistical power, with mean p-values well above conventional significance thresholds. As the
number of treated observations increases, the mean p-values decrease, indicating improved
ability to detect the true effeclﬂ.

Figure [5| presents the corresponding results for the three-way fixed effects specification.
The patterns are similar to the no fixed effects case, but the magnitudes are different. Panel
(a) shows that both OLS and PPML remain approximately unbiased across treatment fre-
quencies. Panel (b) reveals that the variance patterns persist even with the inclusion of
high-dimensional fixed effects, though the absolute levels of variance may differ. Panel (c)
shows the mean p-values, demonstrating that statistical power remains low when the treat-
ment variable is sparse, even in the presence of high-dimensional fixed effects.

LA striking paradox arises when comparing OLS and PPML under sparse regressors. In our simulations
with X activated in only a small number of observations, the empirical variance of OLS and PPML estimates
is of similar magnitude, and indeed OLS estimates tend to be further from zero on average due to upward
bias. Naively, one would expect OLS to produce larger test statistics and thus lower p-values. Instead, the
opposite occurs: OLS p-values cluster around 0.5, while PPML p-values are substantially smaller on average,
even though PPML appears at least as noisy as OLS.

The resolution lies in the difference between the empirical dispersion of the estimators and the estimated
standard errors used in inference. For OLS, the reported robust standard errors are close to the empirical
standard deviation of the estimates across replications, so the resulting ¢-statistics remain small whenever
the biased coefficient lies close to zero. By contrast, for PPML, the reported sandwich standard errors
are systematically too small relative to the true sampling variability when regressors are sparse. As a
consequence, the resulting z-statistics are heavily inflated, producing artificially small p-values in many
replications. This explains why PPML can show lower mean p-values than OLS despite having similar or
even greater empirical variance: the discrepancy arises from mis-estimated standard errors, not from genuine
precision gains. In other words, the paradox is not that PPML is more informative than OLS in these sparse
designs, but that its conventional z-tests are invalid, leading to spurious significance.

This interpretation is further supported by a comparison of bootstrap and conventional p-values. Appendix
[B] shows the results of plotting bootstrap-based p-values against their standard counterparts, OLS aligns
closely with the 45° line, indicating that its robust variance estimator is well calibrated. PPML, however,
shows systematic deviations above the diagonal, meaning that conventional z-tests underestimate the true
uncertainty and yield p-values that are too small. This bootstrap diagnostic confirms that the paradox
originates in mis-estimated PPML standard errors rather than a genuine gain in efficiency.

13



CEPII Working Paper The Variance of Gravity

0.125

Method
oLs

Method
oLs

[ e e T Y T

— PPML — PPML

Mean of Estimate
Variance of Estimate

0.075

0 100 200 300 400 500 0 100 200 300 400 500
Number of Observations with X1=1 Number of Observations with X1=1

(a) Mean of Estimates (b) Variance of Estimates

0.5

0.4

03

Method
oLs
— PPML

Mean P-value

o
N

0.1

0.0

0 100 200 300 400 500
Number of Observations with X1=1

(c) Mean P-values

Figure 5: Effect of Treatment Frequency on Estimation Performance (Three-way Fixed
Effects)

These results demonstrate that the variance problem documented in the previous sections
is fundamentally related to the sparsity of the treatment variable, that is, when the regressor
of interest is infrequent, such as a dummy variable that equals one in fewer than 100 to
500 observations, rather than just the inclusion of high-dimensional fixed effects. Even in
specifications without fixed effects, very sparse regressors lead to highly variable estimates.
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This finding has important implications for empirical research: when studying the effects of
rare events or policies that affect only a small fraction of observations, researchers should
expect high variability in their estimates regardless of the specification.

The practical implications are severe: substantial reductions in the number of treated
observations lead to dramatic increases in variance, making reliable inference much more
difficult. The severity of this variance problem depends on the magnitude of the coefficient
being estimated: for moderate coefficients the variance problem is severe, while for large
effects the variance becomes less of a concern.

2.4 Role of coefficient’s magnitude

The previous analysis demonstrated that sparse regressors lead to high variance in coefficient
estimates. However, an important question remains: how does the magnitude of the true
underlying coefficient affect this variance problem? To address this question, I conduct
additional simulations that systematically vary the coefficient magnitude while keeping the
number of treated observations fixed.

This analysis is motivated by empirical observations in the trade literature. Some trade
policy effects, such as currency unions or major regional integration agreements, tend to
have large estimated coefficients (often above 0.5), while others, such as bilateral investment
treaties or specific types of trade facilitation measures, typically show more moderate effects
(often in the range of 0.1 to 0.3). Understanding how coefficient magnitude interacts with
regressor sparsity has important implications for the detectability of different types of policy
effects.

For this purpose, I extend the previous simulation framework to examine how the true
coefficient magnitude affects estimator performance when regressors are sparse. For the no
fixed effects case, I maintain the same data generating process as in Section [2| but systemat-
ically vary the coefficient on the sparse variable X, from 0.1 to 1.0. For the three-way fixed
effects case, I follow the framework from Section but vary the coefficient on X; from
0.1 to 1.0. In both cases, the number of observations when the treatment variable equals
1 is fixed at 50, which allows us to isolate the effect of coefficient magnitude on estimator
variance while controlling for the degree of sparsity.

Figure[6| presents the results for the case without fixed effects. Panel (a) shows that both
OLS and PPML estimators remain approximately unbiased across the range of coefficient
magnitudes, with mean estimates tracking closely to the 45-degree line representing perfect
estimation. This confirms that bias is not the primary concern in this setting.
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Figure 6: Effect of Coefficient Magnitude on Estimation Performance (No Fixed Effects)

Panel (b) reveals the key finding: the variance of both estimators decreases substantially
as the true coefficient magnitude increases. For small coefficients (0.1 to 0.3), the variance
is very high relative to the magnitude of the coefficient, making precise estimation difficult.
However, as the coefficient increases toward 1.0, the variance drops dramatically. This
pattern is particularly pronounced for the PPML estimator, which shows nearly an order of
magnitude reduction in variance as the coefficient increases from 0.1 to 1.0.

Panel (¢) demonstrates the practical implications of this variance reduction. For small co-
efficients, mean p-values are well above conventional significance thresholds (0.05), indicating
poor statistical power. As coefficient magnitudes increase, mean p-values decrease substan-
tially, reflecting improved ability to detect true effects. This pattern is especially striking
for moderate coefficients: the transition from 0.3 to 0.5 represents a dramatic improvement
in statistical power.

Panel (d) shows that bias remains increases for OLS as the coefficient magnitude in-
creases, while bias for PPML remains negligible. This confirms, for PPML, that the observed
improvements in statistical performance are primarily due to variance reduction rather than
bias changes.

Figure [7] presents the corresponding results for the three-way fixed effects specification.
The patterns are qualitatively similar to the no fixed effects case, but the magnitudes and
relative performance of the estimators differ.
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Figure 7: Effect of Coefficient Magnitude on Estimation Performance (Three-way Fixed
Effects)

Panel (a) confirms that both estimators remain approximately unbiased across the range
of coefficient magnitudes, even in the presence of high-dimensional fixed effects. The OLS
estimator shows a consistent upward bias that increases with the coefficient magnitude, while
the PPML estimator maintains much lower bias levels throughout the range.

Panel (b) shows that the variance reduction with increasing coefficient magnitude per-
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sists in the three-way fixed effects setting, though the absolute levels of variance are higher
than in the no fixed effects case, consistent with the additional complexity of the estima-
tion. For OLS, the variance decreases from 0.017 at coefficient 0.1 to 0.006 at coefficient
1.0. For PPML, the variance decreases from 0.020 at coefficient 0.1 to 0.008 at coefficient
1.0, representing approximately a 60% reduction in variance as the coefficient magnitude
increases.

Panel (c¢) demonstrates that the statistical power improvements with larger coefficients
remain strong even with three-way fixed effects. The critical insight is that for moderate
coefficients typical of many trade policy effects (0.1 to 0.3), mean p-values remain well above
significance thresholds. For a coefficient of 0.1, the mean p-values are 0.34 for OLS and 0.43
for PPML. These results indicate that moderate effects face substantial statistical power
challenges when regressors are sparse.

Panel (d) shows that while bias for PPML remains relatively constant across coefficient
magnitudes, the OLS estimator exhibits a systematic upward bias that increases with the
true coefficient magnitude, indicating that the performance improvements for OLS come
primarily from variance reduction despite increasing bias concerns.

These results have important implications for understanding the limitations of gravity
models in detecting trade policy effects. The key finding is that the severity of the variance
problem depends critically on the magnitude of the true underlying coefficient. This creates
a troubling asymmetry in the detectability of different types of policy effects:

Large effects are detectable: Policy interventions with large true effects (coefficients above
0.5) can be reliably detected even when the policy variable is sparse. This includes some
currency unions that typically show substantial trade creation effects. For coefficients of
0.5 and above, both estimators achieve mean p-values well below 0.05, indicating strong
statistical power.

Moderate effects are difficult to detect: Policy interventions with moderate effects (coef-
ficients in the range of 0.1 to 0.3) face severe statistical power problems when variables are
sparse. For a coefficient of 0.2, the mean p-values are 0.108 for OLS and 0.244 for PPML,
well above conventional significance thresholds. Even at coefficient 0.3, PPML achieves a
mean p-value of only 0.087. This is problematic because many important trade policies, such
as bilateral investment treaties, mutual recognition agreements, or specific trade facilitation
measures, fall into this category. Keep in mind that this is the average case. In around half
of the simulations, the p-values are above this p-value threshold.

The “mussing maiddle” problem: This asymmetry creates a “missing middle” problem in
the trade policy literature. Large effects are reliably detected and published, while moderate
effects often fail to reach statistical significance and may remain unpublished or be incorrectly
interpreted as evidence of no effect. This can lead to a systematic overestimation of the
typical magnitudes of trade policy effects in the published literature.

Bias-variance trade-offs differ by estimator: The results reveal that OLS and PPML
exhibit different bias-variance profiles. While PPML maintains low bias across coefficient
magnitudes (ranging from -0.017 to 0.007), it suffers from higher variance and correspond-
ingly poorer statistical power for moderate coefficients. OLS shows increasing upward bias
with coefficient magnitude but compensates with better statistical power due to lower vari-
ance, particularly for moderate effects.

The coefficient magnitude dependence also helps explain the heterogeneous findings in
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the FTA literature documented by Baier and Bergstrand (2007). Many bilateral FTAs
affect relatively few country-pair-year observations and may have moderate rather than large
effects. The combination of sparsity and moderate coefficient magnitudes makes such effects
difficult to detect reliably, contributing to the pattern of statistically insignificant results
often observed in the literature.

Furthermore, this analysis suggests that researchers should be cautious about interpreting
insignificant results for sparse policy variables as evidence of no effect. When the policy
variable is sparse and the expected effect size is moderate, the high variance may render true
effects statistically undetectable, leading to Type II errors (false negatives). The simulation
results show that even for a true coefficient of 0.3, which represents a substantial economic
effect (approximately 35% increase in trade), the mean p-values remain above conventional
significance levels for PPML estimation.

These findings emphasize the importance of considering both the sparsity of policy vari-
ables and the expected magnitude of effects when designing empirical studies and inter-
preting results. They also highlight the value of approaches that can increase the effective
sample size for policy evaluation, such as pooling similar policies across different agreements
or using difference-in-differences designs that exploit the timing of policy implementations.
Additionally, the bias-variance trade-off suggests that in some cases, the moderate upward
bias of OLS may be preferable to the higher variance of PPML when the primary concern
is detecting moderate policy effects.

3 Ridge-Regularized Simulations

In this section, I consider an alternative approach to address the variance issues documented
in the previous section: Ridge regression. Ridge regression is a regularization technique that
addresses fundamental problems in statistical estimation when dealing with multicollinearity,
high-dimensional data, or situations where the number of parameters approaches the sample
size. The method was originally developed by |[Hoerl and Kennard (1970) and has become a
cornerstone of modern statistical learning (Hastie et al., 2009).

An unexpected benefit of Ridge regression is that it can help stabilize estimates of sparse
policy variables by reducing their variance. This comes at the cost of introducing some bias,
but the trade-off can be beneficial in high-dimensional settings with sparse regressors, where
variance is a major concern.

To understand Ridge regression, it is helpful to think about the fundamental trade-off
between bias and variance. Traditional OLS seeks to minimize the sum of squared residuals
without any constraints on the coefficient values. This approach works well when the data is
well-behaved, but can lead to problems in several scenarios. In particular, when explanatory
variables are highly correlated, the design matrix X’X becomes nearly singular. This means
that small changes in the data can lead to dramatically different coefficient estimates. In the
context of gravity equations, this might occur when different trade policy variables (such as
various types of trade agreements) are highly correlated across country pairs.

Section [2|showed that this also occurs when the regressor of interest is sparse, for example
when a dummy variable for a free trade agreement that is only active in a small fraction of
observations (fewer than 100 to 500). In these cases, OLS and PPML estimates can have
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very high variance, making it difficult to draw reliable inferences about the effects of the
sparse regressor.
The Ridge estimator is defined as:

Bridge = (X'X + M) 71Xy (4)

where A is a non-negative scalar that controls the amount of shrinkage applied to the coeffi-
cients.
Ridge regression arises from minimizing the penalized sum of squared residuals:

n

RSSuiage(B) = D (i — 4B + 1D B2 (5)

i=1 j=1

Taking the derivative of RSSyiqgee(/5) with respect to 8 and setting it to zero yields:

E)Rz—sﬁﬁdge = —2X'(y— XB)+2\3=0 (6)
X'y—X'XB+M\3=0 (7)
(X'X + XS =X"y (8)
Briage = (X'X + M) 7' X'y (9)

This formulation shows that Ridge regression modifies the normal equations by adding A
to the diagonal elements of X’'X | improving the condition number and ensuring invertibility
even if X’'X is singular.

The Ridge penalty term A Z?Zl 6]2 acts as a regularizer, shrinking coefficient estimates
toward zero. This shrinkage reduces the variance of the estimates at the cost of introducing
some bias. The parameter \ governs the bias-variance trade-off:

e If A\ =0, Ridge regression reduces to OLS (no regularization).
e As \ — oo, all coefficients are shrunk toward zero.
e For intermediate values, Ridge regression balances fit and coefficient magnitude.

A key advantage of Ridge regression is its ability to reduce the variance of the estimated
coefficients by making them less sensitive to small changes in the data.

3.1 OLS vs Ridge Variance

To understand why Ridge regression has a lower variance than OLS, let’s examine the vari-
ance formulas for both OLS and Ridge estimator. The OLS estimator is defined as:

Bors = (X'X) ' X"y (10)

Assuming y = X3 + ¢, where ¢ is the error term with Ele] = 0 and V]e] = oI, the
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variance of the OLS estimator is:
V[Bors] = o*(X'X)™! (11)
For the Ridge estimator, which is defined as:
Briage = (X'X + AI) 71Xy (12)

The variance can be derived as follows:

V{Briage] = VI(X'X + M) 7' X"y (13)

= (X'X + M) X'V X(X'X + M) (14)

= (X'X + M) ' X' X(X'X + )7} (15)

To compare these variances, consider the spectral decomposition of X’X = QA(Q’, where

A is a diagonal matrix of eigenvalues A1, Ag, ..., A, and () is an orthogonal matrix of eigen-
vectors.

The variance of OLS can be expressed as:

V([fors] = F?QAIQ’ (16)

While the variance of the Ridge estimator becomes:

V{Budge] = QA + A T'AA + M) 'Q (17)
For each eigenvalue )\;, the corresponding diagonal element in the variance matrix for
OLS is f\—z_, while for Ridge it is (}\(’i—);)g Since A > 0, we can show that:
a2\ o?
—_— < — 18
(N +A)?2 N (18)

This inequality holds for all eigenvalues, demonstrating that the Ridge estimator has a
lower variance than the OLS estimator. This variance reduction is particularly significant
for small eigenvalues, which correspond to directions in the data with high multicollinearity.
The Ridge penalty effectively stabilizes these problematic directions, reducing the overall
variance of the estimator at the cost of introducing some bias. A detailed derivation of the
OLS vs Ridge variance comparison can be found in Appendix [C]

3.2 Monte Carlo Simulations with Ridge

To demonstrate how variance can be tamed without reintroducing large bias, I repeat the
Monte Carlo exercise with a Ridge penalty A chosen to minimize out-of-sample mean-squared
error (details in Appendix |C]).
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3.3 Montecarlo Simulations with Ridge PPML
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Figure 8: Ridge PPML simulations without fixed effects
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3.4 Three-Way Fixed Effects
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Figure 9: Ridge PPML simulations with three-way fixed effects

Relative to the unpenalized estimator, Ridge shrinkage reduces the standard deviation of
the PPML coefficient by roughly 60 percent in the no-fixed-effects design and by nearly
70 percent with three-way fixed effects. The modal estimate clusters tightly around the
true value, and the share of simulations whose 95 percent confidence interval excludes zero
more than doubles. Crucially, this gain in precision comes at little cost: the average Ridge
estimate deviates from the true coefficient by less than 0.005 in every heteroskedasticity case.

4 Empirical Application: Free Trade Agreements

With the lessons from the simulations in hand, I estimate the impact of FTAs on trade flows
using three different methods: (i) PPML, (ii) log OLS, and (iii) Ridge-regularized OLS. For
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this empirical application, I use the following specification:
Tradeijt = exp(ﬁ . FTAijt —|— Qi + 'th + 7’]”) . wijt. (19)

The dependent variable, Trade;j;, is bilateral trade of goods (current USD, mirror-
completed) from the November 2022 release of the CEPII Gravity databaseﬂ (Conte et al.|
2022)). 1 retain the 1960-2015 period. I drop country-pair-year observations with miss-
ing flows from the baseline sample; I keep zeros for PPML and exclude them only for log
OLS/Ridge specifications.

The core FTA indicator FtaBB comes from the Baier and Bergstrand reciprocal trade
agreement data (replication dataset underlying Baier and Bergstrand, 2007; I merge it as a
pairwise dummy equal to one when a reciprocal agreement is in force). I then generate all
bilateral agreement dummies used in Table [If mechanically from this merged panel.

I construct three layers of agreement variables:

1. Bilateral FTAs between specific pairs. For every pair (e.g. CHL-USA, CHL-CHN,
AUS-USA) I create a symmetric dummy that equals one when FtaBB = 1 for either
exporter-importer ordering.

2. Bloc-partner agreements. Using CEPII indicators for EU membership (eu,, euy) and
internally coded time-varying membership spells for EFTA (ISL, LIE, NOR, CHE plus
historical members AUT, DNK, FIN, PRT, SWE, GBR during their tenure), I create
dummies capturing EU-partner, EFTA-partner, and EU-EFTA agreements. These are
1 when at least one side is a (current) bloc member and the bilateral Baier-Bergstrand
FTA flag is 1.

3. Intra-bloc and multi-country agreements. 1 code time-varying internal bloc membership
for Andean Community, Mercosur (including Venezuela’s 2012-2016 spell), NAFTA
(CAN-MEX-USA from 1994), and ASEAN (staggered entries). Intra-bloc dummies
(e.g. Mercosur, Asean) equal one only when both partners are members in the same
year. I also create cross-bloc interface dummies (Mercosur-Bolivia, Mercosur-Andean)
when one partner is a full member and the other is the specified counterpart. All
spells follow publicly documented accession years; temporary memberships, suspen-
sions, or partial-scope agreements outside the Baier-Bergstrand coverage are not sepa-
rately coded, so these variables should be interpreted as reduced-form active compre-
hensive FTA status.

Figure illustrates the distribution of observation counts across the FTA variables
in our dataset. The histogram shows that the vast majority of FTA variables are indeed
sparse, with most having fewer than 500 observations where the agreement is active. This
pronounced sparsity pattern confirms the relevance of the variance problems documented
in Sections [22.2] underscoring why gravity estimates of this variables yield wide standard
errors.

2I use variables trade flow.omtradey, exporter/importer ISO3 codes, year, and great-circle bilateral dis-
tance distw,rithmetic.
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Figure 10: Distribution of Number of Observations by FTA Variable

The distribution reveals several key features of the empirical data. First, there is a clear
concentration of FTA variables in the lower observation counts, with the majority having
fewer than 200 observations. Second, only a small number of variables have moderate to
high observation counts (above 500), corresponding to major regional agreements or long-
standing bilateral partnerships. Third, the distribution exhibits a long right tail, with a few
variables having substantially more observations than the typical FTA dummy.

This empirical distribution closely matches the sparsity scenarios examined in the Monte
Carlo simulations, where variables with fewer than 100-500 observations exhibited problem-
atic variance properties. The prevalence of such sparse variables in real FTA data underscores
the practical importance of the variance issues documented in this paper.

I report three estimators for each agreement: (i) conventional PPML with exporter-year,
importer-year, and pair fixed effects; (ii) log-linear OLS with the same fixed effects (excluding
zero flows); and (iii) Ridge-regularized log-linear estimation that applies a penalty factor of
0.5 on all fixed effect coefficients and 0.01 on the agreement coefficient. I obtain Ridge
standard errors by a clustered (pair) bootstrap with 250 replications. All other standard
errors are pair-clustered.

I estimate each agreement in isolation (one-at-a-time inclusion), so coefficients reflect
average partial effects; this design maximizes comparability of variance across methods but
does not attribute incremental effects beyond overlapping agreements (e.g. EU vs bilateral).
The Ridge column illustrates variance reduction relative to OLS without materially shrinking
economically large effects; significance gains primarily arise from lower standard errors rather
than inflated point estimates.

Table [1| summarizes, for each agreement, point estimates and standard errors for the
Ridge, OLS, and PPML estimators, together with N, the number of observations in which
that agreement dummy equals one.
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Table 1: Effect of Trade Agreements and Border Measures on Trade Flows

FTA Variable Ridge OLS PPML N

Andean Community 0.960***  (.853%** 0.417 960
(0.176)  (0.173)  (0.342)

ASEAN -0.231 -0.471%** -0.163 2246
(0.157)  (0.176)  (0.180)

Australia-Singapore FTA -0.156 -0.225 0.217 20
(0.249)  (0.231)  (0.149)

Australia-Thailand FTA -0.132 -0.213%* 0.097 16
(0.112)  (0.091)  (0.088)

Australia-USA FTA -0.496**  -0.539***  -0.082 16
(0.203)  (0.090)  (0.061)

Bulgaria-Israel FTA 0.154 0.106 0.195 22
(0.174)  (0.149)  (0.154)

Bulgaria-Turkey FTA 0.540* 0.446**%  0.200%** 28
(0.278) (0.182) (0.063)

Canada-Chile FTA 0.131 0.061 0.103* 32
(0.142)  (0.134)  (0.059)

Canada-Costa Rica FTA -0.523*%*  -0.602*%** -0.301%** 20
(0.242)  (0.151)  (0.094)

Canada-Israel FTA 0.032 -0.020 0.072 32
(0.093) (0.099) (0.074)

Chile-China FTA 0.656 0.578 -0.071 12
(0.474)  (0.424)  (0.054)

Chile-Costa Rica FTA 0.691**  0.607*** -0.130 22
(0.284)  (0.107)  (0.106)

Chile-Korea FTA 0.608 0.524 0.229%* 18
(0.598)  (0.546)  (0.138)

Chile-Mexico FTA -0.237 -0.356* 0.315* 26
(0.208)  (0.203)  (0.185)

Chile-Singapore FTA 0.095 0.057 -0.139%** 14
(0.167)  (0.176)  (0.053)

Chile-USA FTA -0.248 -0.315 0.028 18
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Table 1: (continued)

FTA Variable Ridge OLS PPML N
(0.364) (0.343) (0.083)

Colombia-Mexico FTA 0.137 0.016 0.224** 36
(0.128) (0.098) (0.105)

Costa Rica-Mexico FTA 0.221 0.089 0.195* 36
(0.387) (0.402) (0.102)

EFTA-Bulgaria FTA 0.290** 0.274%* -0.044 114
(0.139) (0.125) (0.207)

EFTA-Hungary FTA 0.553** 0.525%* 0.146 126
(0.245) (0.217) (0.110)

EFTA-Israel FTA -0.045 -0.089 0.013 140
(0.190) (0.186) (0.083)

EFTA-Mexico FTA -0.276 -0.323 -0.104 66
(0.270) (0.255) (0.080)

EFTA-Morocco FTA 0.304 0.283 -0.023 78
(0.218) (0.194) (0.089)

EFTA-Poland FTA 0.399%* 0.355 -0.003 126
(0.218) (0.222) (0.069)

EFTA-Romania FTA 0.475* 0.454** 0.031 126
(0.251)  (0.224)  (0.137)

EFTA-Singapore FTA 0.076 0.053 -0.202 52
(0.222)  (0.193)  (0.149)

EFTA-Turkey FTA -0.217 -0.273* 0.003 140
(0.157)  (0.154)  (0.113)

Egypt-Turkey FTA -0.493*  -0.582%** -0.012 12
(0.256) (0.188) (0.175)

EU-Bulgaria FTA 0.394%*%*  (0.344*** -0.125* 721
(0.084) (0.086) (0.067)

EU-Chile FTA 0.171* 0.134 -0.010 424
(0.097) (0.104) (0.066)

EU-Cyprus FTA 0.178** 0.132 0.011 872

(0.090)  (0.101)  (0.094)
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Table 1: (continued)

FTA Variable Ridge OLS PPML N

EU-Egypt FTA L0.560%F%  _0.611F%% 0,106 9242
(0.107)  (0.106)  (0.070)

EU-Hungary FTA 1.294%*%*  1.256%** 0.024 784
(0.108)  (0.114)  (0.060)

EU-Israel FTA 0.288%** 0.230%* 0.247%** 1120
(0.094)  (0.096)  (0.071)

EU-Mexico FTA -0.098 -0.151 -0.111%* 652
(0.119)  (0.119)  (0.051)

EU-Morocco FTA 0.013 -0.026 -0.105* 556
(0.117)  (0.121)  (0.057)

EU-Poland FTA 0.744***  (0.694%** 0.096* 784
(0.085)  (0.086)  (0.054)

EU-Tunisia FTA 0.277%* 0.228%* 0.153%* 624
(0.119)  (0.116)  (0.073)

EU-Turkey FTA 0.034 -0.039 0.137%** 709
(0.089)  (0.091)  (0.033)

FTA (Baier-Bergstrand) 0.346***  0.260***  (0.082%** 46872
(0.021)  (0.020)  (0.015)

Hungary-Israel FTA 0.683**  0.641*** -0.069 30
(0.306)  (0.18%)  (0.118)

Hungary-Turkey FTA -0.216 -0.294%* 0.028 30
(0.154)  (0.132)  (0.130)

Israel-Mexico FTA 0.123 0.060 0.012 24
(0.119)  (0.101)  (0.063)

Israel-Poland FTA 1.549%* 1.537* -0.133 30
(0.939)  (0.814)  (0.121)

Israel-Romania FTA -0.073 -0.129 -0.092 22
(0.213)  (0.210)  (0.192)

Israel-Turkey FTA -0.075 -0.172  -0.154%%* 31
(0.192)  (0.189)  (0.051)

Jordan-USA FTA 1.263 1.246 0.025 22

bdo g buryso M [1dHD

fipranar) fo 2ouDIIDA Y],



6¢

Table 1: (continued)

FTA Variable Ridge OLS PPML N
(1.001)  (0.906)  (0.192)

Mercosur 0.418* 0.249 0.607*** 408
(0.214)  (0.195)  (0.171)

Mercosur-Andean Community 0.509%**  (.382%* -0.093 1104
(0.166)  (0.178)  (0.175)

Mercosur-Bolivia 1.243%%*% 1,093 *** 0.224 247
(0.399)  (0.402)  (0.413)

Mexico-Uruguay FTA -0.561 -0.655%* 0.188 16
(0.417)  (0.368)  (0.195)

Morocco-USA FTA 0.220%* 0.201%*  0.151%** 14
(0.126)  (0.093)  (0.032)

NAFTA 0.090 -0.041 0.181%* 180
(0.142)  (0.122)  (0.073)

Poland-Turkey FTA 0.307** 0.241%* 0.093 26
(0.149)  (0.098)  (0.060)

Romania-Turkey FTA 0.436**  0.347***F  (0.435%** 30
(0.185)  (0.085)  (0.118)

Singapore-USA FTA -0.130 -0.172 -0.115 18
(0.299)  (0.301)  (0.165)

Tunisia-Turkey FTA -0.705%*  -0.802***  -0.010 14
(0.325)  (0.237)  (0.046)

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01. All specifications include origin-year, destination-year, and
bilateral fixed effects. Ridge specifications use penalty parameter of 0.5 for fixed effects. N shows the number of observations where

the FTA variable equals 1.

bdo g buryso M [1dHD

fipranar) fo 2ouDIIDA Y],



CEPII Working Paper The Variance of Gravity

Figure [11] examines the relationship between the number of observations and statistical
significance across the three estimation methods. The figure shows the count of statistically
significant coefficients (at the 10% level) for different bins of observation counts, broken down
by estimation method.
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Figure 11: Count of Significant Coefficients by Number of Observations

The figure reveals several important patterns. First, for FTA variables with very few
observations (0-49 and 50-99 bins), the number of statistically significant results is notably
low across all three methods, consistent with the high variance problem documented in the
simulations. Second, as the number of observations increases, particularly in the 150-249
and 250-499 bins, there is a marked improvement in the ability to detect significant effects,
especially for the Ridge and OLS estimators.

Third, with the exception of the 0-49 bin, the Ridge estimator consistently produces
the same number or more significant results than conventional OLS, demonstrating the
practical benefits of variance reduction through regularization. Fourth, PPML shows a
different pattern, with relatively fewer significant results in the sparse observation bins but
competitive performance in the higher observation categories.

The annotations on each bar show the fraction of significant coefficients out of the total
number of coefficients in each bin, providing a clear picture of detection rates across different
levels of sparsity. These results directly support the main thesis of the paper: when FTA
variables are sparse, the high variance of conventional estimators severely limits the ability
to detect true effects, even when those effects may be economically meaningful.
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4.1 Systematic Patterns in the Results

Three systematic patterns emerge from the empirical analysis, reinforcing the theoretical
predictions from the Monte Carlo simulations:

(i) Agreement sparsity and precision. Consistent with the simulation results, the widest
standard errors arise for the sparsest agreements (small N). For several very infrequent
bilateral FTAs, PPML standard errors are large enough that coefficients are statistically
indistinguishable from zero despite economically meaningful magnitudes. Where N rises
(regional blocs such as EU-partner or ASEAN internal members), precision improves.

(ii) Ridge variance reduction. Ridge estimates typically lie close to their OLS coun-
terparts in magnitude. In many cases where PPML yields insignificant coefficients, Ridge
restores statistical significance (or delivers substantially smaller p-values), illustrating vari-
ance attenuation without large directional shifts.

The last column’s N operationalizes the “effective sample size” for each policy dummy
emphasized throughout this analysis: movements from, say, N < 50 to N = 150 are associ-
ated with visibly tighter intervals across all estimators. This reinforces the central empirical
message of the paper: inference on sparse policy dummies is variance-limited; methodological
tweaks (like Ridge) can mitigate but not eliminate the fundamental information constraint
embodied in V.

Finally, interpreting individual coefficients should therefore be done jointly with their
associated N: two agreements with similar elasticities but different treated counts carry
different evidentiary weight. Reporting N directly in the table makes this bias-variance
trade-off transparent and operational for applied users.

5 Conclusion

This paper documents a fundamental problem in applied gravity estimation: the variance
of gravity estimates becomes prohibitively large when the regressors of interest are sparse,
that is, when policy dummies equal one in fewer than 100 to 500 observations depending
on the specific setting. This variance problem is distinct from well-known issues related to
high-dimensional fixed effects or the incidental parameters problem, and it affects both OLS
and PPML estimators regardless of the specification.

Importantly, while this analysis focuses on trade applications, the documented variance
issues extend beyond international trade to other fields that employ gravity-type specifica-
tions. Gravity equations are widely used in migration economics to model bilateral migration
flows, in macroeconomics to study capital flows and foreign direct investment, and in other
areas of applied economics where bilateral relationships are modeled. The variance problems
identified in this paper therefore have broader implications for empirical economics research
that relies on sparse policy or treatment variables in gravity-style frameworks.

Through extensive Monte Carlo simulations calibrated to match the data generating
processes of [Santos Silva and Tenreyro| (2006) and Weidner and Zylkin| (2021)), I demon-
strate that the variance of coefficient estimates is approximately inversely proportional to
the number of treated observations. When policy variables affect fewer than 100 observa-
tions, the resulting estimates suffer from such high variance that reliable statistical inference
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becomes impossible, even when the underlying coefficients are substantial and economically
meaningful.

The key insight is that this variance problem arises from the fundamental sparsity of
policy variables rather than the dimensionality of the estimation problem. Even in simple
specifications without fixed effects, sparse regressors lead to highly variable estimates. This
finding has considerable implications for empirical research on trade policy, where many
important interventions, such as FTAs, currency unions, or trade disputes, affect only a
small fraction of country-pair-year observations in typical datasets. The severity of this
variance problem depends on the magnitude of the true underlying coefficient: it is severe
and practically prohibitive for moderate coefficients, which represent the majority of trade
policy effects documented in the empirical literature, but becomes negligible for large effects.
This magnitude dependence suggests that gravity models face fundamental limitations in
detecting moderate policy effects when variables are sparse.

To address this issue, I propose Ridge regularization as a practical solution. Ridge-
regularized PPML introduces a small amount of bias but reduces the variance of estimates.
In the simulations, Ridge regression reduces the standard deviation of coefficient estimates.
When re-estimating the effects of FTAs on bilateral trade flows, Ridge-regularized PPML
delivers estimates restores statistical significance to some agreements that PPML deems
insignificant.

However, the main contribution of this paper is not to advocate for Ridge regularization
as a universal solution. Rather, it is to highlight that the variance of gravity estimates is
often the dominant source of uncertainty in applied gravity estimation when dealing with
sparse regressors. This finding underscores the fundamental limitations of gravity models
for evaluating trade policies that affect only a small fraction of observations.

These results have several important implications for future research. First, researchers
should be aware that standard gravity estimates may be unreliable when the policy variables
of interest are sparse. Second, when evaluating the effects of infrequent policies, researchers
should consider reporting not just point estimates and standard errors, but also measures of
the effective sample size for the policy variable. Third, the trade-off between bias and vari-
ance should be explicitly considered when choosing between regularized and unregularized
estimators. Fourth, the severity of variance problems depends on the magnitude of the coef-
ficient being estimated: moderate coefficients, which characterize most empirically observed
trade policy effects, suffer from severe variance problems that can severely compromise in-
ference, while large effects remain largely unaffected by regressor sparsity. This coefficient
magnitude dependence implies that the practical utility of gravity models is significantly
constrained when estimating the moderate effects that are typical of many real-world trade
policies.

The limitations of this analysis also suggest avenues for future research. Alternative
regularization techniques, such as Lasso or elastic net, might offer different bias-variance
trade-offs. The growing literature on machine learning applications to international trade
methods for optimal selection of regularization parameters in the context of gravity models
deserve further investigation. Additionally, the development of specialized inference proce-
dures that account for the sparsity of policy variables could improve upon the approaches
considered here.

In conclusion, this paper demonstrates that the variance problem in gravity estimation
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is more pervasive and fundamental than previously recognized. While Ridge regularization
can partially mitigate this problem, the primary message is that researchers must be aware
of the severe limitations that sparse regressors impose on the reliability of gravity estimates.
Only by acknowledging these limitations can the field move toward more robust and reliable
empirical strategies for evaluating trade policies.
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A Monte Carlo Simulation with frequent policy vari-
ables

This section presents the results of Monte Carlo simulations where the policy variable is
sparse but the magnitude of the coefficient is large, specifically # = 1. In this case, the
variance problem is less severe, and the estimates are more stable.
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Figure 12: Monte Carlo simulations without fixed effects

B Bootstrapped p-values

This appendix presents the results of a Monte Carlo simulation that compares standard
asymptotic p-values with bootstrap-based p-values for both OLS and PPML estimators
when regressors are sparse. The analysis reveals systematic differences in the reliability of
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conventional inference procedures between the two estimators, particularly highlighting the
inadequacy of standard PPML inference when dealing with sparse policy variables.

B.1 Simulation Design

The simulation follows the Case 1 specification from Santos Silva and Tenreyro (2006), where
the variance structure is o7 = u(z;8)"2. I generate datasets with a fixed total sample size
of 1000 observations, systematically varying the number of observations where the binary
treatment variable X5 equals 1. The data generating process follows:

Y; = exp(Bo; + X1, + f2X2i) - 0 (20)

where By; and X;; are drawn from standard normal distributions, X5 is a binary variable
that equals 1 for exactly N observations (where N € {20,40,60,80}), S = 0.1, and 7;
follows a lognormal distribution designed to match the Case 1 pattern.

The simulation runs 50 Monte Carlo replications for each value of N, generating both
conventional asymptotic p-values and bootstrap p-values for the coefficient on X, under both
OLS (applied to logY) and PPML (applied to Y') estimation.

B.2 Bootstrap P-value Methodology

For each simulated dataset and each estimation method, I implement a bootstrap hypothesis
test to evaluate Hy : B = 0 against Hy : fo # 0. The bootstrap procedure follows these
steps:

Step 1: Estimate Original Model For each dataset, I first estimate both the OLS model
log(Y) = a+~X; + B2 X3 + € and the PPML model Y = exp(a +7X; + 82X3) - w to obtain
the original coefficient estimates 9% and pLFME,

Step 2: Create Data Under Null Hypothesis To implement the bootstrap test, I
construct a modified dataset that satisfies the null hypothesis §; = 0 while preserving the
estimated effects of other variables. For OLS, I create:

Yl = exp <log(Yi) _ joLs X%) (21)

For PPML, I create:
Yl = Y, - exp (_ A;PML ) Xﬁ) (22)

These transformations effectively remove the estimated X5 effect from the dependent vari-
able, creating a dataset consistent with the null hypothesis while maintaining the underlying
data structure.

Step 3: Bootstrap Resampling For each method, I draw 200 bootstrap samples by
resampling observations with replacement from the null-adjusted dataset. For each bootstrap
sample b, I re-estimate the model and record the coefficient Ss.
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Step 4: P-value Calculation The bootstrap p-value is calculated as:

B B
1 . L 1 . L
bootstrap __ o : - originaly -~ original
p =2 min <B D ABap = B, 5D (B < B )) (23)
b=1 b=1
where B = 200 is the number of bootstrap replications, and 557" is the coefficient

estimate from the original dataset.

B.3 Key Findings

The bootstrap analysis reveals a striking pattern that helps explain the paradoxical p-value
behavior documented in the main text. Figure 13| shows scatter plots comparing bootstrap
p-values against conventional asymptotic p-values for both estimators across all simulation
replications.

Bootstrap vs Standard P-values Comparison

Method

.
0.50 ‘ 27 oLs
PPML

Bootstrap P-values

0000g000gecegecs §

0.00

N
N
Ro00e
-
N

. '
0.00 0.25 0.50 0.75 1.00
Standard P-values

Figure 13: Comparison of Bootstrap and Standard P-values

For the OLS estimator, bootstrap p-values align closely with the 45-degree line, indi-
cating that the robust standard errors used in conventional OLS inference provide accurate
uncertainty quantification even when regressors are sparse. The correlation between boot-
strap and standard p-values for OLS is approximately 0.85, and the points cluster tightly
around the diagonal.
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In contrast, PPML exhibits systematic deviations from the diagonal, with most points
lying above the 45-degree line. This pattern indicates that conventional PPML z-tests con-
sistently underestimate the true uncertainty, producing p-values that are systematically too
small. The bootstrap p-values are often 2-3 times larger than their asymptotic counterparts,
revealing that the sandwich standard errors used in PPML are inadequate when regressors
are sparse.

Table [2| summarizes the relationship between bootstrap and standard p-values across
different levels of sparsity.

Table 2: Bootstrap vs Standard P-value Summary Statistics

X2 Count Method Correlation Mean Ratio Median Ratio

20 OLS 0.82 1.08 0.95
20 PPML 0.45 2.84 2.12
40 OLS 0.87 1.03 0.98
40 PPML 0.52 241 1.89
60 OLS 0.89 1.01 0.99
60 PPML 0.58 2.15 1.67
80 OLS 0.91 0.99 1.00
30 PPML 0.63 1.92 1.45

The ratio of bootstrap to standard p-values (Bootstrap/Standard) provides a direct mea-
sure of the bias in conventional inference. For OLS, this ratio remains close to 1.0 across all
sparsity levels, confirming that robust standard errors provide reliable inference. For PPML,
the ratio is consistently above 1.5 and often exceeds 2.0, indicating severe underestimation
of uncertainty by conventional methods.

B.4 Implications for Applied Research

These findings have important implications for interpreting gravity estimation results:

1. PPML significance should be interpreted with caution: When policy variables are
sparse (affecting fewer than 100-200 observations), conventional PPML significance tests are
likely to overstate statistical significance. Researchers should be particularly skeptical of
marginally significant PPML results (p-values between 0.01 and 0.10) when dealing with
sparse regressors.

2. OLS inference remains reliable: The close alignment between bootstrap and standard
p-values for OLS suggests that robust standard errors provide accurate inference even under
sparsity. This finding supports the use of OLS as a reliable alternative when the primary
concern is valid statistical inference rather than coefficient consistency.

3. Bootstrap methods provide a diagnostic tool: The systematic relationship between
bootstrap and standard p-values can serve as a diagnostic for inference reliability. Large dis-
crepancies between the two approaches signal potential problems with conventional asymp-
totic inference.

4. FEffect on published literature: The tendency of PPML to produce artificially small p-
values when variables are sparse may contribute to an inflated rate of apparently significant
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results in the trade policy literature, particularly for studies examining rare or country-
specific policy interventions.

The bootstrap analysis thus provides additional context for understanding the inference
paradox documented in the main text, where PPML often shows lower mean p-values than
OLS despite exhibiting similar or higher empirical variance. This paradox arises not from su-
perior PPML efficiency, but from systematically underestimated standard errors that render
conventional PPML z-tests invalid when regressors are sparse.

C Mathematical Derivations

This appendix provides detailed step-by-step mathematical derivations for the variance com-
parisons between Ridge and standard estimators presented in the main text.

C.0.1 Ridge OLS vs OLS Variance: Detailed Derivation
Step 1: Setup and Assumptions We start with the linear model:
y=Xp+e (24)
where € ~ N(0,0%I) and X is an n x p matrix of regressors.
Step 2: OLS Estimator and its Variance The OLS estimator is:
Bors = (X'X) ' X'y (25)

Substituting the model equation:

Bors = (X'X)'X"(XB + ) (26)

= (X'X)'X'XB+ (X' X) ' X'e (27)

=B+ (X' X)X e (28)

Therefore:

V[Bors] = V[B+ (X'X) "' X' (29)

= V[(X'X) ' X €] (30)

= (X'X)'X'V[X(X'X)™? (31)

= (X’X)”X’(JQI)X(X’X)*1 (32)

=2 (X' X)X’ X(X'X)™! (33)

=3 X'X)™! (34)

Step 3: Ridge Estimator and its Variance The Ridge estimator is:

Briage = (X'X + X)Xy (35)
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Substituting the model equation:

Briagge = (X'X + M) 7'X'(XB + €) (36)
= (X'X 4+ M)IX'XB+ (X'X + M) 71X e (37)

Note that (X'X +AI)"'X’X # I, so the Ridge estimator is biased. However, for variance
calculation:

V[ Buidge] = VI(X'X + A1) X"y (38)
= (X'X + X' X'V[y] X (X' X + AXI)7! (39)
=X (X'X + M) X'X(X'X + )7 (40)

Step 4: Spectral Decomposition Let X'X = QAQ’, where @ is orthogonal and A =
diag(A1, Az, ..., Ap).

Then:
V[ors] = o*(QAQ) ™ (41)
=’ QA Q) (42)
For Ridge:
V[Briage) = 02 (QAQ + M) 'QAQ (QAQ' + M) (43)
= QA+ M) AN+ A)7'Q (44)

For each eigenvalue )\;, the corresponding diagonal element in the variance matrix for
. 2 . . o, . 2\ .
OLS is £, while for Ridge it is ﬁ Since A > 0, we can show that:

o\ o?
v P A2 S (45)
This inequality holds for all eigenvalues, demonstrating that the Ridge estimator has a
lower variance than the OLS estimator. This variance reduction is particularly significant
for small eigenvalues, which correspond to directions in the data with high multicollinearity.
The Ridge penalty effectively stabilizes these problematic directions, reducing the overall
variance of the estimator at the cost of introducing some bias.
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